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Last time: synthesis algorithms

⇒ ⇒



Generic synthesis recipe

1. Generate a candidate program

• Enumerate trees
• Top-down

• Bottom-up

• Traverse automata

• Graph reachability

• Enumerate deduction rules

• Cheat* by looking at 
spec/domain

2. Test against specification

• Run tests
• Examples

• Unit-

• Encode for SMT solver

• Apply typing rules
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The space of synthesis algorithms

• Specifications 
(e.g., PBE, types, sketches)

• Search algorithm 
(e.g., inductive, deductive, VSA)

𝜑
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Last time: the search is highly customized

Search by example Search by type Search by logical 
formulae

𝜑2
𝜑1 𝜑3



Also last time



Program Synthesis

⇒ ⇒

𝜑



FlashFill

POPL’11, Excel since 2013





Program Synthesis: closer to real

⇒
⇐

This is what I want

𝜑



Interaction models

𝜑

𝑝

This is what 
I want



Another way to think about it

This is what
I want

⇐
⇒
𝜑

Interaction Model



The design space of interaction models



Learnability of Synthesizers

22 users

• Students in 2nd semester data 
structures class

• Screened to have no additional 
programming experience

3 tasks

BluePencil

Copilot

FlashFill

Regae

SnipPy*

Semi-structured 
interview

Sentiments 
about tool 

used





The space of interaction models

Specifications: Voluntary ⇔ Incidental

Initiation: Triggerless ⇔ User-Triggered

Result communication: Triggerless ⇔ User-triggered

@HilaCodes

More learnable
(by novices)



The interactive synthesis space

× 𝜑



The interactive synthesis space

× 𝜑

{𝑥 ↦ 𝑎 ∗ 𝑦 ↦ 𝑏}
𝑝

{𝑦 ↦ 𝑎 ∗ 𝑒𝑚𝑝}



The interactive synthesis space

,
𝜑( )



Algorithm first: an example

“users can provide specifications using a user interface”

 —imaginary quote based on dozens and dozens of papers



Interaction first: example

Programming by Example be like:

⇒
⇐

𝑥 ↦ 2, 𝑦 ↦ 8 → 4

𝑥 ↦ 16, 𝑦 ↦ 128 → 8



Interaction first: an example

[]

input /

. 2

input length

Retain

Exclude

“Programming Not Only by Example”, ICSE’18

𝑖𝑛𝑝𝑢𝑡 ↦ [1,9,5] → 5

Retain(input.length / 2)

No program



Synthesis Co-Design

,
𝜑( )



Why did synthesis break?
𝑖𝑛𝑝𝑢𝑡 ↦ [1,9,5] → 5

Retain(input.length / 2)

𝑖0 = {𝑖𝑛𝑝𝑢𝑡 ↦ [1,9,5]} height 1 input.length
<3>

height 2 input.length / 2
<1.5>

…

… …

…
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Solution: Generalize synthesis algorithm

Before (examples 𝓔):

Problem: only considers 
execution results for 
equivalence

After (general specification S):

Solution: each spec element 
has an observer that expresses 
what equivalence means for it
…for an example, it’s still 
execution results

Observational equivalence:
𝑚1 ≡ℰ 𝑚2 ⇔

∀ 𝑖, 𝑜 ∈ ℰ. 𝑚1 𝑖 = 𝑚2 (𝑖)

Observational equivalence:
𝑚1 ≡𝑆 𝑚2 ⇔
∀𝜋 ∈ 𝑆. 𝜋 (𝑚1) = 𝜋 (𝑚2)



Synthesis fixed
𝑖𝑛𝑝𝑢𝑡 ↦ [1,9,5] → 5

Retain(input.length / 2)

height 1 2+1
<3,not part of retain>

input.length
<3, part of retain>

height 2 input.length / 2
<1.5,has retained expr>

…

… …

…



Synthesis can do more now

Other things we can create an 
observer (𝜋) for:
• Specifying exceptions
• Negative examples
• Types of subexpressions
• Anything, really, as long as 𝜋 has 

two properties we care about



Interaction models can referee

𝜑

𝑝

Help both sides out!



Live Programming



Live Programming by Example



Task: Abbreviate

1. Split into words

2. Get the first letter of each

3. Put dots in between

"A.A.K"

"Augusta Ada King"

abbreviate()

["Augusta","Ada","King"]

["A","A","K"]

This is what I want
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1. Split into words

2. Get the first letter of each

3. Put dots in between

"A.A.K"

"Augusta Ada King"

abbreviate()

["Augusta","Ada","King"]

["A","A","K"]

This is what I want

Small 
steps!



Let’s make it harder: loops



Synthesizing loops

while (B) S;

Not independent

May not terminate



Reducing the class of programs

function f(args) {
  if (B) {
    return E;
  } else {
    self(args);
  }
}

input.map(e => E)
input.filter(e => B)

input.reduce((acc,e) => E)

for x in xs:
   v1 = E1
   v2 = E2
   ⋮
   vn = En



Recursion by Example

• Specification: 
𝑙 ↦ [] → 0

𝑙 ↦ 2,1 → 2

• Grammar includes self for recursive calls
• In this case, self: [Int] -> Int

lheight 0:

height 1:

<[],[2,1]>

self(l)

<0,2>

tail(l)

<err,[1]>

height 2: self(tail(l))

<???,???>

“Recursive Program Synthesis”, Albarghouthi et al. 2013



New values for self?

• You mean, new examples

• Where do these come from?

“Recursive Program Synthesis”, Albarghouthi et al. 2013



An interaction model!

𝜑

𝜄?

This is what 
I want

𝑝
Active learning



What about higher-order functions?

input.map(e => E)
input.filter(e => B)

input.reduce((acc,e) => E)



Reminder: Example propagation

map

𝑙 𝐸

𝑙 ↦ [1,2,3] → [4,5,6]
𝑙 ↦ [1,1] → [4,4]

𝑥 ↦ 1 → 4
𝑥 ↦ 2 → 5
𝑥 ↦ 3 → 6

map

𝑙 ⊥

𝑙 ↦ [1,2,3] → [4,5,6]
𝑙 ↦ [1,1] → [4,5]

𝑥 ↦ 1 → 4
𝑥 ↦ 2 → 5
𝑥 ↦ 3 → 6
𝑥 ↦ 1 → 5

map

𝑙 ⊥

𝑙 ↦ [1,2,3] → [4,5]
𝑙 ↦ [1,1] → [4,4]



Reminder: Example propagation

filter

𝑙 𝐸

𝑙 ↦ [1,2,3] → [1,3]
𝑙 ↦ [1,1] → [1,1]

𝑥 ↦ 1 → 𝑇
𝑥 ↦ 2 → 𝐹
𝑥 ↦ 3 → 𝑇

filter

𝑙 ⊥

𝑙 ↦ [1,2,3] → [1,3]
𝑙 ↦ [1,1] → [1]

𝑥 ↦ 1 → 𝑇
𝑥 ↦ 2 → 𝐹
𝑥 ↦ 3 → 𝑇
𝑥 ↦ 1 → 𝐹

filter

𝑙 ⊥

𝑙 ↦ [1,2,3] → [1,2,3,4]
𝑙 ↦ [1,1] → [1,1]

E can be built 
bottom-up!



What about reduce?

Independent iterations are fine:

{𝑎𝑟𝑟 ↦ 1,2,3 }
[?? for x in arr]

2,3,4

⇓

??
𝑥 ↦ 1 → 2
𝑥 ↦ 2 → 3
𝑥 ↦ 3 → 4

Programming with a Read-Eval-Synth Loop [OOPSLA’20]



What about reduce?
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What about reduce?

Independent iterations are fine: Data dependencies make 
everything hard:

⇓

??
𝑥 ↦ 1 → 2
𝑥 ↦ 2 → 3
𝑥 ↦ 3 → 4

{𝑎𝑟𝑟 ↦ 1,2,3 }
   arr.reduce(0)((acc,x) => ??)

6

𝑥 ↦ 1, 𝑎𝑐𝑐 ↦ 0 →?1

𝑥 ↦ 2, 𝑎𝑐𝑐 ↦?1 →?2

𝑥 ↦ 3, 𝑎𝑐𝑐 ↦?2 → 6

⇓

{𝑎𝑟𝑟 ↦ 1,2,3 }
[?? for x in arr]

2,3,4

Programming with a Read-Eval-Synth Loop [OOPSLA’20]

How many possible values do ?1 and ?2 have?



𝜆2: Trace-Complete examples

𝑎𝑟𝑟 ↦ 1,2,3 → 6
𝑎𝑟𝑟 ↦ 1,2 → 3
𝑎𝑟𝑟 ↦ 1 → 1

   arr.reduce(0)((acc,x) => ??)

𝑥 ↦ 1, 𝑎𝑐𝑐 ↦ 0 →?1

𝑥 ↦ 2, 𝑎𝑐𝑐 ↦?1 →?2

𝑥 ↦ 3, 𝑎𝑐𝑐 ↦?2 → 6

⇓

Synthesizing data structure transformations from input-output examples, Feser et al. 2015
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𝜆2: Trace-Complete examples

𝑎𝑟𝑟 ↦ 1,2,3 → 6
𝑎𝑟𝑟 ↦ 1,2 → 3
𝑎𝑟𝑟 ↦ 1 → 1
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Synthesizing data structure transformations from input-output examples, Feser et al. 2015

⇓
arr.reduce(0)((acc,x) => x + acc)



And if examples are not trace complete?

full enumeration

reduce

𝑙



Live Programming by Example



What about loops?

• Trace-Complete examples
will solve this

• How can we be sure the user
gives us trace-complete examples?

Bottom-up search 
by example

𝜑

𝑝

This is what 
I want



Interaction model to the rescue!



What happens here?

• Use the after-state to compute the next before-state

• Help the programmer enter examples



But more than one stmt happens in a block

You have to specify all at once Now to synthesize it:

⇓
𝜎𝑠𝑡𝑎𝑟𝑡

𝜎{rs}

𝜎{count}

𝜎{last}

𝜎{rs,count}

𝜎{count,last}

𝜎{rs,last}

𝜎𝑒𝑛𝑑

rs = ?

rs = ?count = ?

count = ?

last = ?

𝜑 =

⇓

𝑥 ↦ 3 → 6



Formal methods: a bird’s eye view

algorithmic part 
we understand

magic



Magic, an incomplete definition

Something that solves really 
hard problems…
… some of the time.

“incomplete assistants”



Available magics

Hard subproblem

Model?



Available magics

Users

SAT

ML 
Models

SMT

Hard subproblem

Model?



Summary

• Think about interactions, not just algorithms

• Both will change once you start doing that
• For the better, if you do it right!

• You can help both sides of the interaction (human, 
algorithm) out
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