
Generating correct code for your
programmers

PLISS 2025 – Part II

Hila Peleg - Technion

Funded by the European Union (ERC, EXPLOSYN, 101117232). Views and opinions expressed are however those of the author(s) only

and do not necessarily reflect those of the European Union or the European Research Council Executive Agency. Neither the European
Union nor the granting authority can be held responsible for them.

Last time: synthesis algorithms

⇒ ⇒

Generic synthesis recipe

1. Generate a candidate program

• Enumerate trees
• Top-down

• Bottom-up

• Traverse automata

• Graph reachability

• Enumerate deduction rules

• Cheat* by looking at
spec/domain

2. Test against specification

• Run tests
• Examples

• Unit-

• Encode for SMT solver

• Apply typing rules

Design Spaces

Input Medium Text Audio Image

Output
Medium

Text Audio Image

Operation Completion Creation Information
extraction

Transformation

Refinement None Code Puppies

Design Spaces

Input Medium Text Audio Image

Output
Medium

Text Audio Image

Operation Completion Creation Information
extraction

Transformation

Refinement None Code Puppies

Design Spaces

Input Medium Text Audio Image

Output
Medium

Text Audio Image

Operation Completion Creation Information
extraction

Transformation

Refinement None Code Puppies

Design Spaces

Input Medium Text Audio Image

Output
Medium

Text Audio Image

Operation Completion Creation Information
extraction

Transformation

Refinement None Code Puppies

The space of synthesis algorithms

• Specifications
(e.g., PBE, types, sketches)

• Search algorithm
(e.g., inductive, deductive, VSA)

𝜑

The space of synthesis algorithms

• Specifications
(e.g., PBE, types, sketches)

• Search algorithm
(e.g., inductive, deductive, VSA)

𝜑= (,)

Last time: the search is highly customized

Search by example Search by type Search by logical
formulae

𝜑2
𝜑1 𝜑3

Also last time

Program Synthesis

⇒ ⇒

𝜑

FlashFill

POPL’11, Excel since 2013

Program Synthesis: closer to real

⇒
⇐

This is what I want

𝜑

Interaction models

𝜑

𝑝

This is what
I want

Another way to think about it

This is what
I want

⇐
⇒
𝜑

Interaction Model

The design space of interaction models

Learnability of Synthesizers

22 users

• Students in 2nd semester data
structures class

• Screened to have no additional
programming experience

3 tasks

BluePencil

Copilot

FlashFill

Regae

SnipPy*

Semi-structured
interview

Sentiments
about tool

used

The space of interaction models

Specifications: Voluntary ⇔ Incidental

Initiation: Triggerless ⇔ User-Triggered

Result communication: Triggerless ⇔ User-triggered

@HilaCodes

More learnable
(by novices)

The interactive synthesis space

× 𝜑

The interactive synthesis space

× 𝜑

{𝑥 ↦ 𝑎 ∗ 𝑦 ↦ 𝑏}
𝑝

{𝑦 ↦ 𝑎 ∗ 𝑒𝑚𝑝}

The interactive synthesis space

,
𝜑()

Algorithm first: an example

“users can provide specifications using a user interface”

 —imaginary quote based on dozens and dozens of papers

Interaction first: example

Programming by Example be like:

⇒
⇐

𝑥 ↦ 2, 𝑦 ↦ 8 → 4

𝑥 ↦ 16, 𝑦 ↦ 128 → 8

Interaction first: an example

[]

input /

. 2

input length

Retain

Exclude

“Programming Not Only by Example”, ICSE’18

𝑖𝑛𝑝𝑢𝑡 ↦ [1,9,5] → 5

Retain(input.length / 2)

No program

Synthesis Co-Design

,
𝜑()

Why did synthesis break?
𝑖𝑛𝑝𝑢𝑡 ↦ [1,9,5] → 5

Retain(input.length / 2)

𝑖0 = {𝑖𝑛𝑝𝑢𝑡 ↦ [1,9,5]} height 1 input.length
<3>

height 2 input.length / 2
<1.5>

…

… …

…

Why did synthesis break?
𝑖𝑛𝑝𝑢𝑡 ↦ [1,9,5] → 5

Retain(input.length / 2)

𝑖0 = {𝑖𝑛𝑝𝑢𝑡 ↦ [1,9,5]} height 1 2+1
<3>

input.length
<3>

height 2 input.length / 2
<1.5>

…

… …

…

Why did synthesis break?
𝑖𝑛𝑝𝑢𝑡 ↦ [1,9,5] → 5

Retain(input.length / 2)

𝑖0 = {𝑖𝑛𝑝𝑢𝑡 ↦ [1,9,5]} height 1 2+1
<3>

height 2 input.length / 2
<1.5>

…

… …

Why did synthesis break?
𝑖𝑛𝑝𝑢𝑡 ↦ [1,9,5] → 5

Retain(input.length / 2)

𝑖0 = {𝑖𝑛𝑝𝑢𝑡 ↦ [1,9,5]} height 1 2+1
<3>

height 2 input.length / 2
<1.5>

…

… …

Solution: Generalize synthesis algorithm

Before (examples 𝓔):

Problem: only considers
execution results for
equivalence

After (general specification S):

Solution: each spec element
has an observer that expresses
what equivalence means for it
…for an example, it’s still
execution results

Observational equivalence:
𝑚1 ≡ℰ 𝑚2 ⇔

∀ 𝑖, 𝑜 ∈ ℰ. 𝑚1 𝑖 = 𝑚2 (𝑖)

Observational equivalence:
𝑚1 ≡𝑆 𝑚2 ⇔
∀𝜋 ∈ 𝑆. 𝜋 (𝑚1) = 𝜋 (𝑚2)

Synthesis fixed
𝑖𝑛𝑝𝑢𝑡 ↦ [1,9,5] → 5

Retain(input.length / 2)

height 1 2+1
<3,not part of retain>

input.length
<3, part of retain>

height 2 input.length / 2
<1.5,has retained expr>

…

… …

…

Synthesis can do more now

Other things we can create an
observer (𝜋) for:
• Specifying exceptions
• Negative examples
• Types of subexpressions
• Anything, really, as long as 𝜋 has

two properties we care about

Interaction models can referee

𝜑

𝑝

Help both sides out!

Live Programming

Live Programming by Example

Task: Abbreviate

1. Split into words

2. Get the first letter of each

3. Put dots in between

"A.A.K"

"Augusta Ada King"

abbreviate()

["Augusta","Ada","King"]

["A","A","K"]

This is what I want

Task: Abbreviate

1. Split into words

2. Get the first letter of each

3. Put dots in between

"A.A.K"

"Augusta Ada King"

abbreviate()

["Augusta","Ada","King"]

["A","A","K"]

This is what I want

Small
steps!

Let’s make it harder: loops

Synthesizing loops

while (B) S;

Not independent

May not terminate

Reducing the class of programs

function f(args) {
 if (B) {
 return E;
 } else {
 self(args);
 }
}

input.map(e => E)
input.filter(e => B)

input.reduce((acc,e) => E)

for x in xs:
 v1 = E1
 v2 = E2
 ⋮
 vn = En

Recursion by Example

• Specification:
𝑙 ↦ [] → 0

𝑙 ↦ 2,1 → 2

• Grammar includes self for recursive calls
• In this case, self: [Int] -> Int

lheight 0:

height 1:

<[],[2,1]>

self(l)

<0,2>

tail(l)

<err,[1]>

height 2: self(tail(l))

<???,???>

“Recursive Program Synthesis”, Albarghouthi et al. 2013

New values for self?

• You mean, new examples

• Where do these come from?

“Recursive Program Synthesis”, Albarghouthi et al. 2013

An interaction model!

𝜑

𝜄?

This is what
I want

𝑝
Active learning

What about higher-order functions?

input.map(e => E)
input.filter(e => B)

input.reduce((acc,e) => E)

Reminder: Example propagation

map

𝑙 𝐸

𝑙 ↦ [1,2,3] → [4,5,6]
𝑙 ↦ [1,1] → [4,4]

𝑥 ↦ 1 → 4
𝑥 ↦ 2 → 5
𝑥 ↦ 3 → 6

map

𝑙 ⊥

𝑙 ↦ [1,2,3] → [4,5,6]
𝑙 ↦ [1,1] → [4,5]

𝑥 ↦ 1 → 4
𝑥 ↦ 2 → 5
𝑥 ↦ 3 → 6
𝑥 ↦ 1 → 5

map

𝑙 ⊥

𝑙 ↦ [1,2,3] → [4,5]
𝑙 ↦ [1,1] → [4,4]

Reminder: Example propagation

filter

𝑙 𝐸

𝑙 ↦ [1,2,3] → [1,3]
𝑙 ↦ [1,1] → [1,1]

𝑥 ↦ 1 → 𝑇
𝑥 ↦ 2 → 𝐹
𝑥 ↦ 3 → 𝑇

filter

𝑙 ⊥

𝑙 ↦ [1,2,3] → [1,3]
𝑙 ↦ [1,1] → [1]

𝑥 ↦ 1 → 𝑇
𝑥 ↦ 2 → 𝐹
𝑥 ↦ 3 → 𝑇
𝑥 ↦ 1 → 𝐹

filter

𝑙 ⊥

𝑙 ↦ [1,2,3] → [1,2,3,4]
𝑙 ↦ [1,1] → [1,1]

E can be built
bottom-up!

What about reduce?

Independent iterations are fine:

{𝑎𝑟𝑟 ↦ 1,2,3 }
[?? for x in arr]

2,3,4

⇓

??
𝑥 ↦ 1 → 2
𝑥 ↦ 2 → 3
𝑥 ↦ 3 → 4

Programming with a Read-Eval-Synth Loop [OOPSLA’20]

What about reduce?

Independent iterations are fine: Data dependencies make
everything hard:

⇓

??
𝑥 ↦ 1 → 2
𝑥 ↦ 2 → 3
𝑥 ↦ 3 → 4

{𝑎𝑟𝑟 ↦ 1,2,3 }
 arr.reduce(0)((acc,x) => ??)

6

𝑥 ↦ 1, 𝑎𝑐𝑐 ↦ 0 →?1

𝑥 ↦ 2, 𝑎𝑐𝑐 ↦?1 →?2

𝑥 ↦ 3, 𝑎𝑐𝑐 ↦?2 → 6

⇓

{𝑎𝑟𝑟 ↦ 1,2,3 }
[?? for x in arr]

2,3,4

Programming with a Read-Eval-Synth Loop [OOPSLA’20]

What about reduce?

Independent iterations are fine: Data dependencies make
everything hard:

⇓

??
𝑥 ↦ 1 → 2
𝑥 ↦ 2 → 3
𝑥 ↦ 3 → 4

{𝑎𝑟𝑟 ↦ 1,2,3 }
 arr.reduce(0)((acc,x) => ??)

6

𝑥 ↦ 1, 𝑎𝑐𝑐 ↦ 0 →?1

𝑥 ↦ 2, 𝑎𝑐𝑐 ↦?1 →?2

𝑥 ↦ 3, 𝑎𝑐𝑐 ↦?2 → 6

⇓

{𝑎𝑟𝑟 ↦ 1,2,3 }
[?? for x in arr]

2,3,4

Programming with a Read-Eval-Synth Loop [OOPSLA’20]

How many possible values do ?1 and ?2 have?

𝜆2: Trace-Complete examples

𝑎𝑟𝑟 ↦ 1,2,3 → 6
𝑎𝑟𝑟 ↦ 1,2 → 3
𝑎𝑟𝑟 ↦ 1 → 1

 arr.reduce(0)((acc,x) => ??)

𝑥 ↦ 1, 𝑎𝑐𝑐 ↦ 0 →?1

𝑥 ↦ 2, 𝑎𝑐𝑐 ↦?1 →?2

𝑥 ↦ 3, 𝑎𝑐𝑐 ↦?2 → 6

⇓

Synthesizing data structure transformations from input-output examples, Feser et al. 2015

𝜆2: Trace-Complete examples

𝑎𝑟𝑟 ↦ 1,2,3 → 6
𝑎𝑟𝑟 ↦ 1,2 → 3
𝑎𝑟𝑟 ↦ 1 → 1

 arr.reduce(0)((acc,x) => ??)

𝑥 ↦ 1, 𝑎𝑐𝑐 ↦ 0 → 1
𝑥 ↦ 2, 𝑎𝑐𝑐 ↦ 1 →?2

𝑥 ↦ 3, 𝑎𝑐𝑐 ↦?2 → 6

⇓

Synthesizing data structure transformations from input-output examples, Feser et al. 2015

𝜆2: Trace-Complete examples

𝑎𝑟𝑟 ↦ 1,2,3 → 6
𝑎𝑟𝑟 ↦ 1,2 → 3
𝑎𝑟𝑟 ↦ 1 → 1

 arr.reduce(0)((acc,x) => ??)

𝑥 ↦ 1, 𝑎𝑐𝑐 ↦ 0 → 1
𝑥 ↦ 2, 𝑎𝑐𝑐 ↦ 1 → 3
𝑥 ↦ 3, 𝑎𝑐𝑐 ↦ 3 → 6

⇓

Synthesizing data structure transformations from input-output examples, Feser et al. 2015

𝜆2: Trace-Complete examples

𝑎𝑟𝑟 ↦ 1,2,3 → 6
𝑎𝑟𝑟 ↦ 1,2 → 3
𝑎𝑟𝑟 ↦ 1 → 1

 arr.reduce(0)((acc,x) => ??)

𝑥 ↦ 1, 𝑎𝑐𝑐 ↦ 0 → 1
𝑥 ↦ 2, 𝑎𝑐𝑐 ↦ 1 → 3
𝑥 ↦ 3, 𝑎𝑐𝑐 ↦ 3 → 6

⇓

Synthesizing data structure transformations from input-output examples, Feser et al. 2015

⇓
arr.reduce(0)((acc,x) => x + acc)

And if examples are not trace complete?

full enumeration

reduce

𝑙

Live Programming by Example

What about loops?

• Trace-Complete examples
will solve this

• How can we be sure the user
gives us trace-complete examples?

Bottom-up search
by example

𝜑

𝑝

This is what
I want

Interaction model to the rescue!

What happens here?

• Use the after-state to compute the next before-state

• Help the programmer enter examples

But more than one stmt happens in a block

You have to specify all at once Now to synthesize it:

⇓
𝜎𝑠𝑡𝑎𝑟𝑡

𝜎{rs}

𝜎{count}

𝜎{last}

𝜎{rs,count}

𝜎{count,last}

𝜎{rs,last}

𝜎𝑒𝑛𝑑

rs = ?

rs = ?count = ?

count = ?

last = ?

𝜑 =

⇓

𝑥 ↦ 3 → 6

Formal methods: a bird’s eye view

algorithmic part
we understand

magic

Magic, an incomplete definition

Something that solves really
hard problems…
… some of the time.

“incomplete assistants”

Available magics

Hard subproblem

Model?

Available magics

Users

SAT

ML
Models

SMT

Hard subproblem

Model?

Summary

• Think about interactions, not just algorithms

• Both will change once you start doing that
• For the better, if you do it right!

• You can help both sides of the interaction (human,
algorithm) out

	Slide 1: Generating correct code for your programmers
	Slide 2: Last time: synthesis algorithms
	Slide 3: Generic synthesis recipe
	Slide 4: Design Spaces
	Slide 5: Design Spaces
	Slide 6: Design Spaces
	Slide 7: Design Spaces
	Slide 8: The space of synthesis algorithms
	Slide 9: The space of synthesis algorithms
	Slide 10: Last time: the search is highly customized
	Slide 11: Also last time
	Slide 12: Program Synthesis
	Slide 13: FlashFill
	Slide 14
	Slide 15: Program Synthesis: closer to real
	Slide 16: Interaction models
	Slide 17: Another way to think about it
	Slide 18: The design space of interaction models
	Slide 19: Learnability of Synthesizers
	Slide 20
	Slide 21: The space of interaction models
	Slide 23: The interactive synthesis space
	Slide 24: The interactive synthesis space
	Slide 25: The interactive synthesis space
	Slide 26: Algorithm first: an example
	Slide 27: Interaction first: example
	Slide 28: Interaction first: an example
	Slide 29: Synthesis Co-Design
	Slide 30: Why did synthesis break?
	Slide 31: Why did synthesis break?
	Slide 32: Why did synthesis break?
	Slide 33: Why did synthesis break?
	Slide 34: Solution: Generalize synthesis algorithm
	Slide 35: Synthesis fixed
	Slide 36: Synthesis can do more now
	Slide 37: Interaction models can referee
	Slide 39: Live Programming
	Slide 40: Live Programming by Example
	Slide 41: Task: Abbreviate
	Slide 42: Task: Abbreviate
	Slide 43: Let’s make it harder: loops
	Slide 44: Synthesizing loops
	Slide 45: Reducing the class of programs
	Slide 46: Recursion by Example
	Slide 47: New values for self?
	Slide 48: An interaction model!
	Slide 49: What about higher-order functions?
	Slide 50: Reminder: Example propagation
	Slide 51: Reminder: Example propagation
	Slide 52: What about reduce?
	Slide 53: What about reduce?
	Slide 54: What about reduce?
	Slide 55: lambda squared: Trace-Complete examples
	Slide 56: lambda squared: Trace-Complete examples
	Slide 57: lambda squared: Trace-Complete examples
	Slide 58: lambda squared: Trace-Complete examples
	Slide 59: And if examples are not trace complete?
	Slide 61: Live Programming by Example
	Slide 62: What about loops?
	Slide 63: Interaction model to the rescue!
	Slide 64: What happens here?
	Slide 65: But more than one stmt happens in a block
	Slide 66: Formal methods: a bird’s eye view
	Slide 67: Magic, an incomplete definition
	Slide 68: Available magics
	Slide 69: Available magics
	Slide 70: Summary

