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Last time: synthesis algorithms

ANV p € Proc,d € Disk -
A (d € disks Written[p]) = A phase[p| € {1,2}
A disk|[d][p] = dblock|p]
A (phase[p| € 1,2) = A (blocksRead|p|[d] # {}) =
(d € disks Written|p])
A hasRead(p, d, p)
ANV p e Proc :
A (phase[p| = 0) = A dblock|p] = InitDB
A disks Written[p| = {}
AN d € Disk : ¥V br € blocksReaq
N broproc = p
A br.block = disk|d][p]
A (phase[p| # 0) = A dblock|p|.mbal € Ballot(p)
A dblock|p|.bal € Ballot(p) U {0}
AN d € Disk : Vbr € blocksReaq
br.block.mbal < dblock|p).
A (phase[p] € {2,3}) = (dblock[p].bal = dblock|p|.mt
A output[p| = 1¥ phase[p| = 3 THEN dblock|p|.inp k&

A chosen € alllnput U { NotAnInput }

AN p € Proc : A input[p] € alllnput
A (ehosen = NotAnlnput) = (output|p]




Generic synthesis recipe

1. Generate a candidate program 2. Test against specification

* Enumerate trees * Run tests

e Top-down * Examples

* Bottom-up * Unit-
 Traverse automata e Encode for SMT solver
* Graph reachability * Apply typing rules

* Enumerate deduction rules

* Cheat” by looking at
spec/domain
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The space of synthesis algorithms

* Specifications
(e.g., PBE, types, sketches) (p

e Search algorithm
(e.g., inductive, deductive, VSA)




The space of synthesis algorithms

* Specifications
(e.g., PBE, types, sketches)

e Search algorithm
(e.g., inductive, deductive, VSA)
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Last time: the search is highly customized

Search by example Search by type Search by logical
formulae



Also last time
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Program Synthesis




FlashFill

POPL'11, Excel since 2013
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4 Julian Bashir
5 Waorf
6 |[Miles O'Brian
7 Copy Cells

) Fill FEormatting Only
) Fill Without Formatting

) Flash FiI
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Program Synthesis: closer to real

This is what I want

J




Interaction models

¢




Another way to think about it
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The design space of interaction models

Exploring the Learnability of Program Synthesizers by Novice

Programmers
Dhanya Jayagopal’ Justin Lubin® Sarah E. Chasins
dhanyajayagopal@berkeley.edu justinlubin@berkeley.edu schasins@cs.berkeley.edu
University of California, Berkeley University of California, Berkeley University of California, Berkeley
Berkeley, USA Berkeley, USA Berkeley, USA

ABSTRACT 1 INTRODUCTION
Modern program synthesizers are increasingly delivering on their The promise of program synthesis is to lighten the burden of pro-
promise of lightening the burden of programming by automatically gramming by automatically generating code that satisfies a user-

generating code, but little research has addressed how we can make provided specification. However, little work has studied how novice



Learnability of Synthesizers

BluePencil
Semi-structured v
3 tasks Copilot : : Y
interview X =

Sentiments
about tool
used

22 users FlashFill

* Students in 2"d semester data Regae
structures class
 Screened to have no additional

programming experience




SYNTHESIZER NAME # DESCRIPTION

BLue-PEnciL  Point 1 Change the program to use Point objects to represent position rather than a pair of integers (x, y).

BLUE-PENCIL Rename 2 Change the name of variable X to 1atitude. Change the name of variable Y to longitude.

BrLue-PEnciL  LinkedList 3 Change a list to be a LinkedList (built-in Java class) instead of a primitive array.

CoriLOT Abbreviate 1 Write a program to return the abbreviation of a given name.

CorILOT Occurrences 2 Write a program to turn a list into a dictionary that counts the number of occurrences of each character.

CorILOT Subsequence 3 Write a program to find the length of the longest subsequence of a given sequence such that all
elements of the subsequence are sorted in increasing order. For example, the output for [10, 22, 9,
33, 21, 5@, 41, 60, 8@] should be 6 because the longest sorted subsequence is [10, 22, 33,
50, 6@, 80].

Frasu FiLL Names 1 Using the data from Column A, populate Column B with <Last Name>, <First Name> and populate
Column C with <First Initial><Last Name> in lower case.

Frasu FILL Emails Populate Column B with the prefixes of the email addresses in Column A.

Frasu FiLL Characters 3 Populate Column B with all of the upper case letters from Column A. Populate Column C with all of
the lower case letters from Column A. Populate Column D with all of the numbers from Column A.

REGAE Plus 1 Write a regular expression that accepts strings that contain + or digits but no ++.

REGAE ABC 2  Write a regular expression that accepts strings that only have A, B, C, or any combinations of them.

REGAE Phone 3 Write a regular expression that accepts phone numbers that start with one optional + symbol and
follow with a sequence of digits. For example, +91 and 91, but not 91+.

SNn1PPY Abbreviate 1 Write a program to return the abbreviation of a given name.

SNIPPY Reverse Write a program to reverse a given siring.

SNn1PPY Filter 3 Write a program to return a given string without a specified letter.




The space of interaction models

Specifications: Voluntary & | Incidental

Initiation: Triggerless | & User-Triggered

Result communication: |Triggerless | & User-triggered

More learnable
(by novices)

Exploring the Learnability of Program Synthesizers by Novice

Programmers
Dhanya Jayagopal® Justin Lubin’ Sarah E. Chasins
dhanyajayagopal@berkeley.edu justinlubin@berkeley.edu schasins@cs.berkeley.edu
University of California, Berkeley University of California, Berkeley University of California, Berkeley
Berkeley, USA Berkeley, USA Berkeley, USA

ABSTRACT 1 INTRODUCTION
Modern p@gﬁluﬁmg%rs are increasingly delivering on their The promise of program synthesis is to lighten the burden of pro-
promise of lightening the burden of programming by automatically gramming by automatically generating code that satisfies a user-
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The interactive synthesis space




The interactive synthesis space

X P axyw bj
p

A B C
1 |First Mame Last Name Email {y = a * emp}
2 |Benjamin Sisko benjamins@ds9.sf
3 MNerys Kira
4 Miles O'Brien
5 Jadzia Dax

g |Julian Bashir




The interactive synthesis space




Algorithm first: an example

“users can provide specifications using a user interface”
—Imaginary guote based on dozens and dozens of papers
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Interaction first: an example

Exclu
{ inp;1t / \
: 2
Retai / \
input length /

—

“Proramming Not Only by Example”, ICSE’18

{input » [1,9,5]1} -5
Retain(input.length / 2)

No program




Synthesis Co-Design




Why did synthesis break?

{input » [1,9,5]1} -5
Retain(input.length / 2)

height 1 .. [input.length| .. i ={input+~ [1,9,5]}
<3>
height 2 .. |input.length / 2|

<1.5>




Why did synthesis break?

height 1

height 2

2+1| ...

<3>

{input » [1,9,5]1} -5
Retain(input.length / 2)

input.length| .. lo ={input~ [1,9,5]}

<3>

input.length / 2
<1.5>




Why did synthesis break?

height 1

height 2

2+1

<3>

{input » [1,9,5]1} -5
Retain(input.length / 2)

ip ={input » [1,9,5]}

input.length / 2
<1.5>




Why did synthesis break?

height 1

height 2

{input » [1,9,5]1} -5
Retain(input.length / 2)

2+1

<3>

ip ={input » [1,9,5]}



Solution: Generalize synthesis algorithm

Before (examples E&): After (general specification S):

Problem: only considers Solution: each spec element
execution results for has an observer that expresses
equivalence what equivalence means for it

...for an example, it’s still
execution results



Synthesis fixed

{input » [1,9,5]1} -5
Retain(input.length / 2)

height 1 2+1 ... |[input.length| ...
<3,not part of retain> <3, part of retain>
height 2 _|input.length / 2

<1.5,has retained expr>




Synthesis can do more now

Other things we can create an

observer (m) for: Type Constraints:
* Specifying exceptions unbers pronipit |
. Boolean: require [eiuelshlichRs
* Negative examples -
. String: require | prohibit
* Types of subexpressions S e | oroninis
* Anythlng’ reauy’ as long as has Array: require | prohibit

two properties we care about



Interaction models can referee

Help both sides out!



Live Programming
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el el el
s WNPRP S

def task(s):

rs =
count = 1
last = s[0]

for ¢ in s[1:]:
if ¢ = last:
count += 1

else:
rs +=
count
last
return rs

task('aabccca')

str(count) + last

(% 5 TN S PV NS TR T =

G S rs
'a' 'aabccca'

'aabccca' '2alb’
'c' 'aabccca' '2alb’

il

#

0

1 'b"' 'aabccca'
2 'c' 'aabccca'
3

A

5

a "aabccca’

count last

2

2
3

Ial

rs

I2al
‘2alb’

'2alb3c’

count last

2 'a'
1 'b'
3 'c'



Live Programming by Example

def initials(s):
2 letters = '1

. . . . # s letters
i returs

"Augusta Ada King'

5 dnitials(*Augusta Ada King") -
6 T
1 def initials(s):
. letters = °°
L 5 letters
3 return
] "Augusta Ada King' | [RCNPERCYPERLS

5 initials( Augusta Ada King")
W 5 letters v

fasgurtn Adn Eing'

1 def initials{s):

2 # synthesizing. Please wait... .

3 return . :

. ‘Augusta Ada King

5 initials('Augusta Ada King')

- ¥ ] w

1 def initials({s):

2 letters = [var[8] for var in s.split(" "))

3 return ¥ 5 letters

'Augusta Ada King" ['A"', "A", "K']

5 inltlals['.&u“hn.j Ada King')

L=



Task: Abbreviate

This is what I want

J

"Augusta Ada King"

[ nAugustan , "Ada" , "King" ]

1. Split into words
2. Get the first letter of each
3. Put dots in between

["A" , "A" , "K"]

"A.A.K"

N

abbreviate ()



Task: Abbreviate

This is what I want

J

"Augusta Ada King"

[ nAugustan , "Ada" , "King" ]

1. Split into words
2. Get the first letter of each
3. Put dots in between

["A" , "A" , "K"]

"A.A. K" <

abbreviate ()

Small
steps!



Let’s make it harder: loops



Synthesizing loops



Reducing the class of programs




“Recursive Program Synthesis”, Albarghouthi et al. 2013

Recursion by Example

Specification e []} ~ 0

o ification:

P {1 [2,1]} > 2

e Grammar includes self for recursive calls <2P2,200>

* |n this case, self: [Int] -> Int height2: | self(tail(1l))

~. <0,2> -~ <err,[1]>

height 1: M tail(l)
A N
<[],[2,1]>

height O: 1




“Recursive Program Synthesis”, Albarghouthi et al. 2013

New values for self?

* You mean, new examples
* Where do these come from?

P\




An interaction model!

Active learning




What about higher-order functions?

input.map(e => E)
input.filter(e => B)
input.reduce((acc,e) => E)



Reminder: Example propagation

{l » [1,2,3]} - [4,5,6]

{l »[1,1]} - [4,4]

/\

[

E

{x»1} -4
{x »2}->5
{x »3}-6

{l » [1,2,3]} - [4,5,6]
{l »[1,1]} - [4,5]

/\

l

1

{x»1} -4
{x »2} -5
{x >3} -6
{x »1} > 5

{l »[1,2,3]} - [4,5]
{l»[1,1]} - [4,4]

/\

[

1




Reminder: Example propagation

{l »[1,2,3]} - [1,3] {l~[1,2,3]} -~ [1,3] {1-1[1,2,3]} = [1,2,3,4]
{t - [11]} - [11] {1 [1,1]} - [1] {1-[1,1]} - [1,1]
filter filter filter

‘/\ (r1) o> T /\ (1) o> T /\
[ E |{xm2}->F [ 1 |{x»2}>F ) 1

{x»3}-T {x »3}>T

{x»>1}>F

E can be built

bottom-up!



What about reduce?

Independent iterations are fine:

{arr » [1,2,3]}
[?? for X 1n arr]
[2,3,4]

U
{x -1} -2
?? {x»2}-3
{x >3} -4

Programming with a Read-Eval-Synth Loop [OOPSLA’20]



What about reduce?

Independent iterations are fine:

{arr » [1,2,3]}
[?? for X 1n arr]
[2,3,4]

U

{x -1} -2
?? {x»2}-3
{x >3} -4

Data dependencies make
everything hard:

{arr » [1,2,3]}
arr.reduce(0)((acc,x) => ??)
6

U

{x » 1,acc » 0} -,
{x - 2,acc »?,} -7,
{x » 3,acc»?,} > 6

Programming with a Read-Eval-Synth Loop [OOPSLA’20]



What about reduce?

Independent iterations are fine:

{arr » [1,2,3]}
[?? for X 1n arr]
[2,3,4]

U

{x -1} -2
?? {x»2}-3
{x >3} -4

Data dependencies make
everything hard:

{arr » [1,2,3]}
arr.reduce(0)((acc,x) => ??)
6

U

{x » 1,acc » 0} -,
{x - 2,acc »?,} -7,
{x » 3,acc»?,} > 6

How many possible values do 7; and 7, have?

Programming with a Read-Eval-Synth Loop [OOPSLA’20]



A% Trace-Complete examples

{arr » [1,2,3]} > 6
{farr » [1,2]} - 3
{farr » [1]} > 1
arr.reduce(0)((acc,x) => ??)

U

{x » 1,acc » 0} -7
{x > 2,acc »?,} -7,
{x »3,acc»?,} -6

Synthesizing data structure transformations from input-output examples, Feser et al. 2015



A% Trace-Complete examples

{arr » [1,2,3]} > 6
{farr » [1,2]} - 3
{farr » [1]} > 1
arr.reduce(0)((acc,x) => ??)

U

{x »1,acc» 0} -1
{x > 2,acc — 1} -7,
{x »3,acc»?,} -6

Synthesizing data structure transformations from input-output examples, Feser et al. 2015



A% Trace-Complete examples

{arr » [1,2,3]} > 6
{farr » [1,2]} - 3
{farr » [1]} > 1
arr.reduce(0)((acc,x) => ??)

U

{x»1lacc~0}-1
{x > 2,acc» 1} -3
{x » 3,acc» 3} -6

Synthesizing data structure transformations from input-output examples, Feser et al. 2015



A% Trace-Complete examples

{arr » [1,2,3]} > 6
{farr » [1,2]} - 3
{farr » [1]} > 1
arr.reduce(0)((acc,x) => ??)

U

{x»1lacc~0}-1
{x > 2,acc» 1} -3
{x » 3,acc» 3} -6

U

arr.reduce(@)((acc,x) => x + acc)

Synthesizing data structure transformations from input-output examples, Feser et al. 2015



And if examples are not trace complete?

full enumeration




Live Programming by Example

def initials(s):
2 letters = '1

. . . . # s letters
i returs

"Augusta Ada King'

5 dnitials(*Augusta Ada King") -
6 T
1 def initials(s):
. letters = °°
L 5 letters
3 return
] "Augusta Ada King' | [RCNPERCYPERLS

5 initials( Augusta Ada King")
W 5 letters v

fasgurtn Adn Eing'

1 def initials{s):

2 # synthesizing. Please wait... .

3 return . :

. ‘Augusta Ada King

5 initials('Augusta Ada King')

- ¥ ] w

1 def initials({s):

2 letters = [var[8] for var in s.split(" "))

3 return ¥ 5 letters

'Augusta Ada King" ['A"', "A", "K']

5 inltlals['.&u“hn.j Ada King')

L=



What about loops?

* Trace-Complete examples
will solve this

P
e How can we be sure the user /\

] This is what
gives us trace-complete examples? Iwant

P

Bottom-up search
by example



Interaction model to the rescue!

# X S rs arr

010 T3, 2, 3; 4;
138 % LB 2.3, 4,
2 38 " 1, 2, 3, 4,
3 4 @0 % [y 2: 3; 4;
45 @ °° [4, 2. 3, 4,



What happens here?

e Use the after-state to compute the next before-state
* Help the programmer enter examples

# X S;, Is arr Sout
@1 e "' [1, 2, 3,4,5}] 1
101 [1, 2, 3, 4, 5]
2 3 1 ' [1, 2, 3, 4, 5]| 1
3 4 141 °° [1, 2; 2, A, 51| 1
45 1 ' [1, 2,3, 4, 5]] 1




But more than one stmt happens in a block

You have to specify all at once

for ¢ in s[1:]:
if ¢ = last:
count += 1

else:
rs += str(count) + last
count = 1
last = c

return rs

11 Ld>L — L.
count += 1

else:

last, count, rs = 72
return rs

Now to synthesize it:

O-{r‘s,last}




Formal methods: a bird’s eye view

magic

algorithmic part
we understand




Magic, an incomplete definition

4 N

Something that solves really

hard problems...
... some of the time.

A 4

“incomplete assistants”




Available magics

Hard subproblem




Available magics

Users

ML
Models

Hard subproblem




summary

* Think about interactions, not just algorithms

* Both will change once you start doing that
* For the better, if you do it right!

* You can help both sides of the interaction (human,
algorithm) out
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