Generating correct code for your
programmers

PLISS 2025 — Part II

Hila Peleg - Technion

Funded by the European Union (ERC, EXPLOSYN, 101117232). Views and opinions expressed are however those of the author(s) only
and do not necessarily reflect those of the European Union or the European Research Council Executive Agency. Neither the European
sansmancana UNION NOT the granting authority can be held responsible for them.

Last time: synthesis algorithms

ANV p € Proc,d € Disk -
A (d € disks Written[p]) = A phase[p| € {1,2}
A disk|[d][p] = dblock|p]
A (phase[p| € 1,2) = A (blocksRead|p|[d] # {}) =
(d € disks Written|p])
A hasRead(p, d, p)
ANV p e Proc :
A (phase[p| = 0) = A dblock|p] = InitDB
A disks Written[p| = {}
AN d € Disk : ¥V br € blocksReaq
N broproc = p
A br.block = disk|d][p]
A (phase[p| # 0) = A dblock|p|.mbal € Ballot(p)
A dblock|p|.bal € Ballot(p) U {0}
AN d € Disk : Vbr € blocksReaq
br.block.mbal < dblock|p).
A (phase[p] € {2,3}) = (dblock[p].bal = dblock|p|.mt
A output[p| = 1¥ phase[p| = 3 THEN dblock|p|.inp k&

A chosen € alllnput U { NotAnInput }

AN p € Proc : A input[p] € alllnput
A (ehosen = NotAnlnput) = (output|p]

Generic synthesis recipe

1. Generate a candidate program 2. Test against specification

* Enumerate trees * Run tests

e Top-down * Examples

* Bottom-up * Unit-
 Traverse automata e Encode for SMT solver
* Graph reachability * Apply typing rules

* Enumerate deduction rules

* Cheat” by looking at
spec/domain

Design Spaces

Output
Medium

Operation

Refinement

Input Medium RI24

Text

Completion

None

Audio
Audio

Creation

Code

Image

Image

Information
extraction

Puppies

Transformation

Design Spaces

Input Medium Audio Image

Output Text Audio Image

Medium

Operation Completion | Creation Information
extraction

Refinement m Code Puppies

Transformation

Design Spaces

Input Medium '

Output
Medium

Operation

Refinement

y
Completion

None

Audio
Audio

Creation

Image

Image

Information
extraction

Puppies

Transformation

Design Spaces

Input Medium Q&% Audio

Output Text Audio Image
Medium

Operation Completion Creation Information
extraction
Refinement None Code

The space of synthesis algorithms

* Specifications
(e.g., PBE, types, sketches) (p

e Search algorithm
(e.g., inductive, deductive, VSA)

The space of synthesis algorithms

* Specifications
(e.g., PBE, types, sketches)

e Search algorithm
(e.g., inductive, deductive, VSA)

’ ‘-‘ 5%

Last time: the search is highly customized

Search by example Search by type Search by logical
formulae

Also last time

.

T'? Shriram
“'_ !," @ShriramKMurthi

Where do you get the properties???

9:07 AM - May 26, 2025

47 Retweets 1K Likes

O 0 O

Program Synthesis

FlashFill

POPL'11, Excel since 2013

A B
1 ‘Een Sisko bsisko@ds9.sf.gov
2 | Nerys Kira
5 |Jadzia Dax
4 Julian Bashir
5 Waorf
6 |[Miles O'Brian
7 Copy Cells

) Fill FEormatting Only
) Fill Without Formatting

) Flash FiI

sl % ' f Northcarolina

l L

! thank you flash fill that is ﬂ

i
City exactly what | V\(g_ljzegl_ g

~ Austin TX Texas 2
yalt Lake City uT Utah 1!
Durham NC North Carolina 3
Columbus OH £
3aton Rouge LA 11
Omaha NE No 27
New Orleans LA Lor 39
Des Moines IA lo 16
Seattle WA W 42|
)klahoma City OK 14,
Houston X 62(
It Chadeston SC ‘
ishington DC ;
lwaukee wi 528
mbia SC
€ CA -~
L, FL IE

Program Synthesis: closer to real

This is what I want

J

Interaction models

¢

Another way to think about it

- / Interaction Model
ﬁ'ﬁ

' 'z

A=>

-

|

ds()31)3
Ong\{(ﬁisile‘ ik

g (func u

Nt L0

The design space of interaction models

Exploring the Learnability of Program Synthesizers by Novice

Programmers
Dhanya Jayagopal’ Justin Lubin® Sarah E. Chasins
dhanyajayagopal@berkeley.edu justinlubin@berkeley.edu schasins@cs.berkeley.edu
University of California, Berkeley University of California, Berkeley University of California, Berkeley
Berkeley, USA Berkeley, USA Berkeley, USA

ABSTRACT 1 INTRODUCTION
Modern program synthesizers are increasingly delivering on their The promise of program synthesis is to lighten the burden of pro-
promise of lightening the burden of programming by automatically gramming by automatically generating code that satisfies a user-

generating code, but little research has addressed how we can make provided specification. However, little work has studied how novice

Learnability of Synthesizers

BluePencil
Semi-structured v
3 tasks Copilot : : Y
interview X =

Sentiments
about tool
used

22 users FlashFill

* Students in 2"d semester data Regae
structures class
 Screened to have no additional

programming experience

SYNTHESIZER NAME # DESCRIPTION

BLue-PEnciL Point 1 Change the program to use Point objects to represent position rather than a pair of integers (x, y).

BLUE-PENCIL Rename 2 Change the name of variable X to 1atitude. Change the name of variable Y to longitude.

BrLue-PEnciL LinkedList 3 Change a list to be a LinkedList (built-in Java class) instead of a primitive array.

CoriLOT Abbreviate 1 Write a program to return the abbreviation of a given name.

CorILOT Occurrences 2 Write a program to turn a list into a dictionary that counts the number of occurrences of each character.

CorILOT Subsequence 3 Write a program to find the length of the longest subsequence of a given sequence such that all
elements of the subsequence are sorted in increasing order. For example, the output for [10, 22, 9,
33, 21, 5@, 41, 60, 8@] should be 6 because the longest sorted subsequence is [10, 22, 33,
50, 6@, 80].

Frasu FiLL Names 1 Using the data from Column A, populate Column B with <Last Name>, <First Name> and populate
Column C with <First Initial><Last Name> in lower case.

Frasu FILL Emails Populate Column B with the prefixes of the email addresses in Column A.

Frasu FiLL Characters 3 Populate Column B with all of the upper case letters from Column A. Populate Column C with all of
the lower case letters from Column A. Populate Column D with all of the numbers from Column A.

REGAE Plus 1 Write a regular expression that accepts strings that contain + or digits but no ++.

REGAE ABC 2 Write a regular expression that accepts strings that only have A, B, C, or any combinations of them.

REGAE Phone 3 Write a regular expression that accepts phone numbers that start with one optional + symbol and
follow with a sequence of digits. For example, +91 and 91, but not 91+.

SNn1PPY Abbreviate 1 Write a program to return the abbreviation of a given name.

SNIPPY Reverse Write a program to reverse a given siring.

SNn1PPY Filter 3 Write a program to return a given string without a specified letter.

The space of interaction models

Specifications: Voluntary & | Incidental

Initiation: Triggerless | & User-Triggered

Result communication: |Triggerless | & User-triggered

More learnable
(by novices)

Exploring the Learnability of Program Synthesizers by Novice

Programmers
Dhanya Jayagopal® Justin Lubin’ Sarah E. Chasins
dhanyajayagopal@berkeley.edu justinlubin@berkeley.edu schasins@cs.berkeley.edu
University of California, Berkeley University of California, Berkeley University of California, Berkeley
Berkeley, USA Berkeley, USA Berkeley, USA

ABSTRACT 1 INTRODUCTION
Modern p@gﬁluﬁmg%rs are increasingly delivering on their The promise of program synthesis is to lighten the burden of pro-
promise of lightening the burden of programming by automatically gramming by automatically generating code that satisfies a user-

ditsinnineadlenas ks B 12008 s snmusiamais as clklsmanad Basamn s sadiin il ekl astiidBnablsin : Rlankinsmsns 12080 snisialy has alendladl Bt wismnslonds

The interactive synthesis space

The interactive synthesis space

X P axyw bj
p

A B C
1 |First Mame Last Name Email {y = a * emp}
2 |Benjamin Sisko benjamins@ds9.sf
3 MNerys Kira
4 Miles O'Brien
5 Jadzia Dax

g |Julian Bashir

The interactive synthesis space

Algorithm first: an example

“users can provide specifications using a user interface”
—Imaginary guote based on dozens and dozens of papers

Inte

racti
tion first: ex

. exam

ple

Pro
gram
min
g by Example
be lik
e:

{x m

{xx"’ 162')1 - 8} -4

§(func tion(
{cards();) ;
$(ﬁ"|‘dd‘| .Ol\(‘ \’esi'l,e' ,) ,hmw
jon cards(){
= 5(w1'ndow).\

Zct ov
var width =
Af ¥ 1501

4dth <
cardssmal\screen()
een H

}e\se{ o
ca(ds\ﬂgSCl

Interaction first: an example

Exclu
{ inp;1t / \
: 2
Retai / \
input length /

—

“Proramming Not Only by Example”, ICSE’18

{input » [1,9,5]1} -5
Retain(input.length / 2)

No program

Synthesis Co-Design

Why did synthesis break?

{input » [1,9,5]1} -5
Retain(input.length / 2)

height 1 .. [input.length| .. i ={input+~ [1,9,5]}
<3>
height 2 .. |input.length / 2|

<1.5>

Why did synthesis break?

height 1

height 2

2+1| ...

<3>

{input » [1,9,5]1} -5
Retain(input.length / 2)

input.length| .. lo ={input~ [1,9,5]}

<3>

input.length / 2
<1.5>

Why did synthesis break?

height 1

height 2

2+1

<3>

{input » [1,9,5]1} -5
Retain(input.length / 2)

ip ={input » [1,9,5]}

input.length / 2
<1.5>

Why did synthesis break?

height 1

height 2

{input » [1,9,5]1} -5
Retain(input.length / 2)

2+1

<3>

ip ={input » [1,9,5]}

Solution: Generalize synthesis algorithm

Before (examples E&): After (general specification S):

Problem: only considers Solution: each spec element
execution results for has an observer that expresses
equivalence what equivalence means for it

...for an example, it’s still
execution results

Synthesis fixed

{input » [1,9,5]1} -5
Retain(input.length / 2)

height 1 2+1 ... |[input.length| ...
<3,not part of retain> <3, part of retain>
height 2 _|input.length / 2

<1.5,has retained expr>

Synthesis can do more now

Other things we can create an

observer (m) for: Type Constraints:
* Specifying exceptions unbers pronipit |
. Boolean: require [eiuelshlichRs
* Negative examples -
. String: require | prohibit
* Types of subexpressions S e | oroninis
* Anythlng’ reauy’ as long as has Array: require | prohibit

two properties we care about

Interaction models can referee

Help both sides out!

Live Programming

O 00 N oo B~ W N =

el el el
s WNPRP S

def task(s):

rs =
count = 1
last = s[0]

for ¢ in s[1:]:
if ¢ = last:
count += 1

else:
rs +=
count
last
return rs

task('aabccca')

str(count) + last

(% 5 TN S PV NS TR T =

G S rs
'a' 'aabccca'

'aabccca' '2alb’
'c' 'aabccca' '2alb’

il

#

0

1 'b"' 'aabccca'
2 'c' 'aabccca'
3

A

5

a "aabccca’

count last

2

2
3

Ial

rs

I2al
‘2alb’

'2alb3c’

count last

2 'a'
1 'b'
3 'c'

Live Programming by Example

def initials(s):
2 letters = '1

. . . . # s letters
i returs

"Augusta Ada King'

5 dnitials(*Augusta Ada King") -
6 T
1 def initials(s):
. letters = °°
L 5 letters
3 return
] "Augusta Ada King' | [RCNPERCYPERLS

5 initials(Augusta Ada King")
W 5 letters v

fasgurtn Adn Eing'

1 def initials{s):

2 # synthesizing. Please wait... .

3 return . :

. ‘Augusta Ada King

5 initials('Augusta Ada King')

- ¥] w

1 def initials({s):

2 letters = [var[8] for var in s.split(" "))

3 return ¥ 5 letters

'Augusta Ada King" ['A"', "A", "K']

5 inltlals['.&u“hn.j Ada King')

L=

Task: Abbreviate

This is what I want

J

"Augusta Ada King"

[nAugustan , "Ada" , "King"]

1. Split into words
2. Get the first letter of each
3. Put dots in between

["A" , "A" , "K"]

"A.A.K"

N

abbreviate ()

Task: Abbreviate

This is what I want

J

"Augusta Ada King"

[nAugustan , "Ada" , "King"]

1. Split into words
2. Get the first letter of each
3. Put dots in between

["A" , "A" , "K"]

"A.A. K" <

abbreviate ()

Small
steps!

Let’s make it harder: loops

Synthesizing loops

Reducing the class of programs

“Recursive Program Synthesis”, Albarghouthi et al. 2013

Recursion by Example

Specification e []} ~ 0

o ification:

P {1 [2,1]} > 2

e Grammar includes self for recursive calls <2P2,200>

* |n this case, self: [Int] -> Int height2: | self(tail(1l))

~. <0,2> -~ <err,[1]>

height 1: M tail(l)
A N
<[],[2,1]>

height O: 1

“Recursive Program Synthesis”, Albarghouthi et al. 2013

New values for self?

* You mean, new examples
* Where do these come from?

P\

An interaction model!

Active learning

What about higher-order functions?

input.map(e => E)
input.filter(e => B)
input.reduce((acc,e) => E)

Reminder: Example propagation

{l » [1,2,3]} - [4,5,6]

{l »[1,1]} - [4,4]

/\

[

E

{x»1} -4
{x »2}->5
{x »3}-6

{l » [1,2,3]} - [4,5,6]
{l »[1,1]} - [4,5]

/\

l

1

{x»1} -4
{x »2} -5
{x >3} -6
{x »1} > 5

{l »[1,2,3]} - [4,5]
{l»[1,1]} - [4,4]

/\

[

1

Reminder: Example propagation

{l »[1,2,3]} - [1,3] {l~[1,2,3]} -~ [1,3] {1-1[1,2,3]} = [1,2,3,4]
{t - [11]} - [11] {1 [1,1]} - [1] {1-[1,1]} - [1,1]
filter filter filter

‘/\ (r1) o> T /\ (1) o> T /\
[E |{xm2}->F [1 |{x»2}>F) 1

{x»3}-T {x »3}>T

{x»>1}>F

E can be built

bottom-up!

What about reduce?

Independent iterations are fine:

{arr » [1,2,3]}
[?? for X 1n arr]
[2,3,4]

U
{x -1} -2
?? {x»2}-3
{x >3} -4

Programming with a Read-Eval-Synth Loop [OOPSLA’20]

What about reduce?

Independent iterations are fine:

{arr » [1,2,3]}
[?? for X 1n arr]
[2,3,4]

U

{x -1} -2
?? {x»2}-3
{x >3} -4

Data dependencies make
everything hard:

{arr » [1,2,3]}
arr.reduce(0)((acc,x) => ??)
6

U

{x » 1,acc » 0} -,
{x - 2,acc »?,} -7,
{x » 3,acc»?,} > 6

Programming with a Read-Eval-Synth Loop [OOPSLA’20]

What about reduce?

Independent iterations are fine:

{arr » [1,2,3]}
[?? for X 1n arr]
[2,3,4]

U

{x -1} -2
?? {x»2}-3
{x >3} -4

Data dependencies make
everything hard:

{arr » [1,2,3]}
arr.reduce(0)((acc,x) => ??)
6

U

{x » 1,acc » 0} -,
{x - 2,acc »?,} -7,
{x » 3,acc»?,} > 6

How many possible values do 7; and 7, have?

Programming with a Read-Eval-Synth Loop [OOPSLA’20]

A% Trace-Complete examples

{arr » [1,2,3]} > 6
{farr » [1,2]} - 3
{farr » [1]} > 1
arr.reduce(0)((acc,x) => ??)

U

{x » 1,acc » 0} -7
{x > 2,acc »?,} -7,
{x »3,acc»?,} -6

Synthesizing data structure transformations from input-output examples, Feser et al. 2015

A% Trace-Complete examples

{arr » [1,2,3]} > 6
{farr » [1,2]} - 3
{farr » [1]} > 1
arr.reduce(0)((acc,x) => ??)

U

{x »1,acc» 0} -1
{x > 2,acc — 1} -7,
{x »3,acc»?,} -6

Synthesizing data structure transformations from input-output examples, Feser et al. 2015

A% Trace-Complete examples

{arr » [1,2,3]} > 6
{farr » [1,2]} - 3
{farr » [1]} > 1
arr.reduce(0)((acc,x) => ??)

U

{x»1lacc~0}-1
{x > 2,acc» 1} -3
{x » 3,acc» 3} -6

Synthesizing data structure transformations from input-output examples, Feser et al. 2015

A% Trace-Complete examples

{arr » [1,2,3]} > 6
{farr » [1,2]} - 3
{farr » [1]} > 1
arr.reduce(0)((acc,x) => ??)

U

{x»1lacc~0}-1
{x > 2,acc» 1} -3
{x » 3,acc» 3} -6

U

arr.reduce(@)((acc,x) => x + acc)

Synthesizing data structure transformations from input-output examples, Feser et al. 2015

And if examples are not trace complete?

full enumeration

Live Programming by Example

def initials(s):
2 letters = '1

. . . . # s letters
i returs

"Augusta Ada King'

5 dnitials(*Augusta Ada King") -
6 T
1 def initials(s):
. letters = °°
L 5 letters
3 return
] "Augusta Ada King' | [RCNPERCYPERLS

5 initials(Augusta Ada King")
W 5 letters v

fasgurtn Adn Eing'

1 def initials{s):

2 # synthesizing. Please wait... .

3 return . :

. ‘Augusta Ada King

5 initials('Augusta Ada King')

- ¥] w

1 def initials({s):

2 letters = [var[8] for var in s.split(" "))

3 return ¥ 5 letters

'Augusta Ada King" ['A"', "A", "K']

5 inltlals['.&u“hn.j Ada King')

L=

What about loops?

* Trace-Complete examples
will solve this

P
e How can we be sure the user /\

] This is what
gives us trace-complete examples? Iwant

P

Bottom-up search
by example

Interaction model to the rescue!

X S rs arr

010 T3, 2, 3; 4;
138 % LB 2.3, 4,
2 38 " 1, 2, 3, 4,
3 4 @0 % [y 2: 3; 4;
45 @ °° [4, 2. 3, 4,

What happens here?

e Use the after-state to compute the next before-state
* Help the programmer enter examples

X S;, Is arr Sout
@1 e "' [1, 2, 3,4,5}] 1
101 [1, 2, 3, 4, 5]
2 3 1 ' [1, 2, 3, 4, 5]| 1
3 4 141 °° [1, 2; 2, A, 51| 1
45 1 ' [1, 2,3, 4, 5]] 1

But more than one stmt happens in a block

You have to specify all at once

for ¢ in s[1:]:
if ¢ = last:
count += 1

else:
rs += str(count) + last
count = 1
last = c

return rs

11 Ld>L — L.
count += 1

else:

last, count, rs = 72
return rs

Now to synthesize it:

O-{r‘s,last}

Formal methods: a bird’s eye view

magic

algorithmic part
we understand

Magic, an incomplete definition

4 N

Something that solves really

hard problems...
... some of the time.

A 4

“incomplete assistants”

Available magics

Hard subproblem

Available magics

Users

ML
Models

Hard subproblem

summary

* Think about interactions, not just algorithms

* Both will change once you start doing that
* For the better, if you do it right!

* You can help both sides of the interaction (human,
algorithm) out

	Slide 1: Generating correct code for your programmers
	Slide 2: Last time: synthesis algorithms
	Slide 3: Generic synthesis recipe
	Slide 4: Design Spaces
	Slide 5: Design Spaces
	Slide 6: Design Spaces
	Slide 7: Design Spaces
	Slide 8: The space of synthesis algorithms
	Slide 9: The space of synthesis algorithms
	Slide 10: Last time: the search is highly customized
	Slide 11: Also last time
	Slide 12: Program Synthesis
	Slide 13: FlashFill
	Slide 14
	Slide 15: Program Synthesis: closer to real
	Slide 16: Interaction models
	Slide 17: Another way to think about it
	Slide 18: The design space of interaction models
	Slide 19: Learnability of Synthesizers
	Slide 20
	Slide 21: The space of interaction models
	Slide 23: The interactive synthesis space
	Slide 24: The interactive synthesis space
	Slide 25: The interactive synthesis space
	Slide 26: Algorithm first: an example
	Slide 27: Interaction first: example
	Slide 28: Interaction first: an example
	Slide 29: Synthesis Co-Design
	Slide 30: Why did synthesis break?
	Slide 31: Why did synthesis break?
	Slide 32: Why did synthesis break?
	Slide 33: Why did synthesis break?
	Slide 34: Solution: Generalize synthesis algorithm
	Slide 35: Synthesis fixed
	Slide 36: Synthesis can do more now
	Slide 37: Interaction models can referee
	Slide 39: Live Programming
	Slide 40: Live Programming by Example
	Slide 41: Task: Abbreviate
	Slide 42: Task: Abbreviate
	Slide 43: Let’s make it harder: loops
	Slide 44: Synthesizing loops
	Slide 45: Reducing the class of programs
	Slide 46: Recursion by Example
	Slide 47: New values for self?
	Slide 48: An interaction model!
	Slide 49: What about higher-order functions?
	Slide 50: Reminder: Example propagation
	Slide 51: Reminder: Example propagation
	Slide 52: What about reduce?
	Slide 53: What about reduce?
	Slide 54: What about reduce?
	Slide 55: lambda squared: Trace-Complete examples
	Slide 56: lambda squared: Trace-Complete examples
	Slide 57: lambda squared: Trace-Complete examples
	Slide 58: lambda squared: Trace-Complete examples
	Slide 59: And if examples are not trace complete?
	Slide 61: Live Programming by Example
	Slide 62: What about loops?
	Slide 63: Interaction model to the rescue!
	Slide 64: What happens here?
	Slide 65: But more than one stmt happens in a block
	Slide 66: Formal methods: a bird’s eye view
	Slide 67: Magic, an incomplete definition
	Slide 68: Available magics
	Slide 69: Available magics
	Slide 70: Summary

