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Abstract
Programming-by-Example (PBE) is the paradigm of program synthesis specified via input-output pairs.
It is commonly used because examples are easy to provide and collect from the environment. A popular
optimization for enumerative synthesis with examples is Observational Equivalence (OE), which groups
programs into equivalence classes according to their evaluation on example inputs. Current formulations
of OE, however, are severely limited by the assumption that the synthesizer’s target language contains
only pure components with no side-effects, either enforcing this in their target language, or ignoring
it, leading to an incorrect enumeration. This limits their ability to use realistic component sets.

We address this limitation by borrowing from Separation Logic, which can compositionally reason
about heap mutations. We reformulate PBE using a restricted Separation Logic: Concrete Heap
Separation Logic (CHSL), transforming the search for programs into a proof search in CHSL. This
lets us perform bottom-up enumerative synthesis without the need for expert-provided annotations or
domain-specific inferences, but with three key advantages: we (i) preserve correctness in the presence
of memory-mutating operations, (ii) compact the search space by representing many concrete programs
as one under CHSL, and (iii) perform a provably correct OE-reduction.

We present SObEq (Side-effects in OBservational EQuivalence), a bottom-up enumerative al-
gorithm that, given a PBE task, searches for its CHSL derivation. The SObEq algorithm is proved
correct with no purity assumptions: we show it is guaranteed to lose no solutions. We also evaluate
our implementation of SObEq on benchmarks from the literature and online sources, and show that
it produces high-quality results quickly.
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1 Introduction

Program Synthesis is the task of automatically generating a program that satisfies a given
specification. A popular specification modality for synthesizing general-purpose programs is
input-output examples, where a solution is defined as a program that, evaluated on each provided
input, produces the provided output. This is commonly referred to as Programming-by-Example
(PBE) [7, 16, 21, 23, 26]. PBE is notable because, unlike logic-based specifications [29, 49, 56],
it does not require specialized knowledge to use, and values for it can be collected from a
programming environment. It has been used to develop synthesizers for both end-users [23, 60]
and programmers [12, 16, 17].
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7:2 Bottom-up Synthesis of Memory Mutations with Separation Logic

AST size 5: ⟨15⟩ ⟨2⟩

n + arr[0] arr[n - 1] ···

AST size 3: ⟨10⟩ ⟨[]⟩ ⟨4⟩

arr[0] arr.slice(n) n - 1 ···

AST size 2: ⟨[−1,2,10,90,100]⟩

arr.sort() ···

AST size 1: ⟨[10,100,90,−1,2]⟩ ⟨5⟩ ⟨0⟩ ⟨1⟩

arr n 0 1 ···
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Figure 1 (a) Classical OE bank of programs with their observed evaluation results used to enumerate

pure programs. Size 2 contains arr.sort() that sorts in-place, making compositions with it incorrect.
(b) AST of the target program, divided into the variable states in which each subexpression is evaluated.

Consider a synthesis specification for a JavaScript program where, given an array of integers
arr of length n, we want to return the sum of the smallest and largest elements of the array.
We might specify this problem with the example:

{arr 7→ [10,100,90,−1,2],n 7→5}→99

If we assume the value in arr is disposable, e.g., the program may sort it in place, the following
is a solution that we would like to synthesize:

arr.sort ()[0] + arr[n-1]

To solve this synthesis task, we can select a set of components (operations, library functions, etc.)
and search the space of all programs constructed from those components. There are many ways
to search, including constructing a representation of the space that can be traversed [15, 23, 39]
and encoding the problem for a solver [30, 56]. Such approaches place heavy constraints on
which components can be included. But the simplest form of search is to enumerate the space
of programs [13, 19, 25, 52] by applying the components, then test resulting programs. Because
the space of programs is astronomical, this approach is prohibitively slow when implemented
naively. Moreover, most mechanisms to prune the space are domain-specific and restricted
by the manual effort for handling each component individually.

Bottom-up Enumeration. One technique that does not require any domain-specific effort is
bottom-up enumeration with an Observational Equivalence (OE) reduction [2, 59]. OE uses com-
ponents to combine smaller programs into increasingly larger ones. To prune its search space, it
maintains a bank of programs that are representatives of the equivalence classes of observation-
ally equivalent programs, i.e., programs that, on the given inputs, evaluate to the same outputs.

New programs are obtained by applying components from the component set to smaller
sub-expressions already in the bank. For example, in Fig. 1(a) applying + to the representative
of equivalence classes ⟨5⟩ and ⟨10⟩ will yield the program n + arr[0], which will be banked
as the representative of equivalence class ⟨15⟩. The bank lets the enumeration memoize the
evaluation results of each program, and use them when evaluating larger programs, rather than
re-evaluating each full program from scratch. The space is pruned by keeping only one program
per equivalence class. Despite discarding many programs, this ensures no solution that existed
in the un-reduced space is lost. Previous works use variations of this technique in synthesizers
for C [59], Python [16, 17], JavaScript [45], Java [22], Selenium [36], and OCaml [2, 40].

Enumeration with heap mutations. The standard assumption of OE is that all components
are pure and cause no side-effects [2, 17, 36, 40, 59, 60], and any mutations of the state in the
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target program are performed outside the synthesis task. Other synthesizers make assumptions
on the intermediate states [16, 47], reducing the problem to synthesis of pure programs.

This is because OE has a fundamental limitation when handling mutating programs. Notice
that JavaScript’s sort() works in-place. In the example above, the call to arr[n-1] evaluates to
a different value if evaluated before arr.sort() versus after it. A classical OE enumerator that
performs its OE-reduction based on variable values in the inputs would consider arr[n-1] to be
in the equivalence class ⟨2⟩. However, unlike its equivalent in languages like Python, arr.sort()
also returns a self-reference, allowing the result to be composed into larger expressions, as in
our target program. If the enumeration itself does not account for this, it will use the wrong
memoized value computed using the unsorted value of arr in its candidates, yielding a result
that does not actually satisfy the specifications. Moreover, the enumeration may see another
program whose value is really ⟨2⟩, discard arr[n-1], and never find this solution.

In other words, the classical bottom-up enumeration with OE described above is incorrect
with memory mutations. This was also a problem in previous work: some synthesizers ignore
the issue, leading to an incorrect enumeration [22, 45]. Peleg et al. [45], for example, allow
JavaScript’s in-place sort(), breaking their own purity assumption.

The key question addressed by this work, then, is how to correctly enumerate mutating pro-
grams without losing solutions while maintaining enough pruning to make the process tractable.

The Problem with Mutations. Classical OE considers only one memory state, the state
both before and after evaluation of any expression. A composition with memory mutations,
however, must consider a potentially different after-state. Fig. 1(b) shows this: sub-programs
after a mutation are evaluated in a modified before-state, the after-state of the mutation. Since
composition by the synthesizer simulates evaluation, composition with a mutating expression
requires that the synthesizer to be aware of modified before-states. The synthesizer will need
to generate complex expressions, e.g., arr[n-1] in Fig. 1(b), in a modified state.

Naively, we could store alongside each program not only its evaluation results, as in classical
OE, but also its before- and after-state. While this would correct the equivalence relation and
ensure programs are not erroneously discarded, the enumeration would still need to enumerate
programs over and over: the program n-1 that yields the result 4 would be enumerated both
when arr is in its initial state and its modified state, and, as we do not know what the sequence
of mutations in the target program will be (if any), in many other states as well. This is not only
costly, as it creates many copies of the program in different equivalence classes, it is unnecessarily
wasteful, since n-1 is independent of the value of arr. We need an alternative equivalence reduc-
tion that both composes valid evaluation sequences, and constructs a compact program space.

Our approach. We introduce SObEq (Side-effects in OBservational EQuivalence), to our
knowledge the first bottom-up proof-directed synthesis technique. SObEq is a bottom-up
enumerative algorithm for expressions proven correct in the presence of mutating components.

A key insight of SObEq is that mutating operations only mutate a small portion of the state.
If the variable state, usually considered as a variable valuation or a stack, is considered as a
heap, then Separation Logic’s [44, 51] concept of local reasoning can be used to reason about
programs in the synthesizer’s space. The Frame Rule gives us the tools for a compositional
application of operations, in much the same way that bottom-up synthesis already does for
pure programs. Thanks to the Frame Rule, a compact representation of programs suffices,
rather than considering the full variable valuation every time.

We define Concrete Heap Separation Logic (CHSL), a representation of the operational
semantics of the language in the style of Separation Logic. For example, in CHSL we describe the
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mutating program n++ evaluated on the example’s input as the triple {n 7→5}n++{n 7→6;5} where
the precondition n 7→5 describes n’s initial value, and the postcondition n 7→6;5 describes its value
after mutation and its result. Instead of searching for a program, SObEq searches for a CHSL de-
rivation from inputs to outputs. Separation Logic has been used in program synthesis before [29,
49], including where information from the environment can be leveraged as a SL specification [20].
But previous work performed the proof search deductively, applying manually-crafted inference
rules. The concrete heaps of CHSL allow SObEq to instead search the proof space bottom-up,
composing larger programs from smaller ones, and relying only on program evaluation, like a clas-
sical OE search does. CHSL gives SObEq two key advantages over classical bottom-up synthesis.

Correct composition via logic. First, SObEq’s bank stores CHSL triples rather than pro-
grams. To build larger programs, SObEq also applies each component to smaller triples in
the bank, but unlike simple programs, triples can only be combined according to the rules of
the logic. This means programs always compose in a way that forms a valid evaluation, and
there is no risk of evaluating a program in the wrong state. Moreover, OE can be determined
by simply ignoring the program and comparing the specifications surrounding each triple: two
programs with the same pre- and postcondition are guaranteed to behave the same, and will
also compose the same. This maintains SObEq’s correctness in the presence of mutations.

Local reasoning. Second, thanks to the Frame Rule, CHSL can reason about the local effects
of programs: triples do not need to store parts of the state that the program does not touch.
For instance, {n 7→5}n++{n 7→6;5} does not specify anything about arr, because n++ will behave
the same way in all concrete states where the value of n is 5. This representation is compact,
with each triple describing the behavior in many, potentially infinitely many, concrete states.
This makes it much easier for SObEq to find programs that use variables after a mutation
occurs, like our example, compared to the naive solution of enumerating using the full before-
and after-states. This local reasoning also allows us to prioritize more general programs: ones
that provide the same result and the same mutations for more concrete states. Discarding the
less general programs lets us compact the space even further.

Our implementation. We implemented SObEq as a synthesizer for JavaScript programs that
can create non-pure expressions, including sequences of expressions. We evaluated our synthes-
izer on 63 benchmarks curated from the literature, from StackOverflow and from competitive
programming website LeetCode. Compared to state of the art synthesis of general mutations,
SObEq returns more concise and higher quality solutions, with less overfitting and without per-
forming spurious operations, on both tasks that require and do not require mutations. Import-
antly, SObEq is both deterministic, meaning it will more reliably integrate with a larger tool, and
proved correct, meaning that it will never discard all solutions to a task while exploring the space.

Contributions. The main contributions of this paper are as follows:
▷ A formulation of the PBE problem with memory mutations as the search for a derivation

in a restricted Separation Logic, CHSL.
▷ The SObEq algorithm, a bottom-up enumerative algorithm that searches for a derivation

with a proven-correct OE-reduction.
▷ An implementation of SObEq in a JavaScript synthesizer, and an evaluation on 63 bench-

marks curated from the literature, StackOverflow and LeetCode, which shows that
SObEq outperforms state of the art on a variety of synthesis tasks with and without
mutations, and highlights the class of tasks for which a naive approach would fail.



K. Ferdowsi and H. Peleg 7:5

arr 7→ [−1,2,10,90,100]∗n 7→5: {arr 7→ [−1,2,10,90,100]∗n 7→ 5;100}

arr[n-1] ···

arr 7→ [10,100,90,−1,2]∗n 7→5: {arr 7→ [10,100,90,−1,2]∗n 7→ 5;2} {arr 7→ [10,100,90,−1,2]∗n 7→ 5;−1}

arr[n-1] arr[n-(1 + 1)] ···

arr 7→ [−1,2,10,90,100]: {arr 7→ [−1,2,10,90,100];[−1,2,10,90,100]} {arr 7→ [−1,2,10,90,100];−1}

arr arr[0] ···

arr 7→ [10,100,90,−1,2]: {arr 7→ [10,100,90,−1,2];[10,100,90,−1,2]} {arr 7→ [10,100,90,−1,2];10}

arr arr[0]
{arr 7→ [−1,2,10,90,100];[−1,2,10,90,100]} {arr 7→ [−1,2,10,90,100];−1}

arr.sort() arr.sort()[0] ···

n 7→5: {n 7→ 5;5} {n 7→ 5;4} {n 7→ 6;5}

n n - 1 n++ ···

emp: {emp;0} {emp;1} {emp;−1}

0 1 -1 ···
Figure 2 The precondition bank used to enumerate the program in Fig. 1(b). Each program is

additionally labeled with its postcondition comprising an assertion and its result.

2 Overview

In this section, we present SObEq through the example introduced in Sec. 1. First, we present
SObEq’s notation for mutating programs, which is compact compared to the real space of
programs. Next, we show how this helps us enumerate programs correctly. Finally, we show
how ordering programs by generality helps us prune the space even further.

2.1 Mutating programs
We begin with a reminder of programs and their construction in Observational Equival-
ence [2, 59], then show how we modify them to correctly reason about side-effects.

Classical OE-reduction and the program bank. Bottom-up enumeration with an OE-
reduction uses a component set C comprising functions, operators, variables, and literals, to
search for a program specified by a vector of input-output examples, E⃗ , where each example is of
the form ι→ω. For each program we compute its equivalence class’s label. In classical OE, we use
its evaluation result, JpK(ι), for each ι in E⃗ . In our example, the expression arr has the observed
behavior [10,100,90,−1,2] on the provided input, so its equivalence class is ⟨[10,100,90,−1,2]⟩.

To enumerate the space of programs, we use a bank to store representatives of equivalence
classes, as seen in Fig. 1(a). For each function or operator f ∈ C with arity k, we collect all
k-tuples of programs already in the bank and use them as arguments to apply f . This is usually
done with some notion of iterations, e.g., as in Fig. 1(a), by increasing number of AST nodes.
When enumerating programs of AST size 5, then, the enumerator considers the component array
dereference ([]), which has an arity of 2. Among pairs of programs collected from the bank with
a total size of 4 will be the program arr, representative of the equivalence class ⟨[10,100,90,−1,2]⟩,
and the program n - 1, representative of ⟨4⟩. Applying array dereference yields arr[n - 1] with
the observed behavior ⟨2⟩. Crucially, we do not have to evaluate the full program arr[n - 1] to
get this value: we can use observed values [10,100,90,−1,2] and 4 and only compute the final step.

When the enumeration finds a program from an equivalence class with no representative
in the bank—i.e., no program in the bank has the same label—it is added to the bank to be
used when constructing larger programs. This is the case with arr[n - 1], which is added to
the bank at size 5. Alternatively, if a representative of the equivalence class already exists
in the bank, we discard the new program. If a program’s observed values are equal to the
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provided outputs, the program is a solution. Since we only use discovered equivalence classes
(i.e., programs) to construct larger programs, the effect of OE’s pruning compounds.

The problems with side-effects. We quickly run into issues when C contains functions or
operators that can cause side-effects. The next step in solving our example is to enumerate
arr.sort()[0] + arr[n - 1]. But, as we are about to see, using the classical approach this
program will not be evaluated correctly, and it may even be pruned away.

We already saw how the subprogram p1 = arr[n - 1] was enumerated and labeled ⟨2⟩, and
p2 = arr.sort()[0] will be enumerated similarly: at size 4, it will be composed from arr.sort()
(size 2) and 0 (size 1), and added to the bank as a representative of ⟨−1⟩.

The first source of trouble is that OE is a dynamic programming algorithm: when construct-
ing the larger p2 + p1, the enumerator uses the memoized observed values to compute: ⟨−1+2⟩=
⟨1⟩. However, since p2 modifies arr, p2 + p1 actually evaluates to 99 on the input ι. Worse, this
erroneous value means the synthesizer will consider p2 + p1, our solution, equivalent to p1 + p2

so it may be discarded. While a seemingly simple solution is to just evaluate the program in full
each time, ensuring labels are correct, this is not only expensive, depending on the operation, but
more importantly, insufficient. If the synthesizer sees the constant value 2, e.g., by enumerating
1 + 1, this would cause the larger—and seemingly equivalent—arr[n - 1] to be discarded. OE
hinges on the enumeration only discarding a program when it already has a suitable replacement,
but arr[n - 1] evaluated after arr.sort() would still have no equivalent program in the bank.

Rethinking the program representation. Our problem was not distinguishing between the
same program when evaluated using different values of arr. We also saw in Sec. 1 the need
for distinction between programs that return the same value, but their effect on variables is
different, e.g., n and n++ when evaluated using the same value of n.

We replace programs with triples in Concrete Heap Separation Logic (CHSL): the precon-
dition records the variables before its evaluation, and the postcondition comprises an assertion
recording the variables after evaluation and the result of the evaluation, like so:

{arr 7→ [10,100,90,−1,2]}arr.sort(){arr 7→ [−1,2,10,90,100];[−1,2,10,90,100]}

From here on, we name the original array value arrorig and its sorted value arrsort, and use them
in our examples and figures for brevity. In this representation, we can tell apart these two triples:

{arr 7→arrorig}arr{arr 7→arrorig;arrorig} {arr 7→arrsort}arr{arr 7→arrsort;arrsort}

where the first is arr evaluated on the original array, returning the original array value, and
the second is evaluated on a state where the array has been sorted, returning the sorted value.
We use the second triple to construct larger programs evaluated after sort().

Notice that since all values are concrete, CHSL does not need domain- or library-specific infer-
ence rules to connect the pre- and postcondition of the triple, but can rely entirely on evaluation.

Local reasoning. These pre- and postconditions do not encode fully-concrete states, they
leave n unconstrained. This makes our representation of the space more compact: the triple
{arr 7→ arrorig}arr.sort(){arr 7→ arrsort;arrsort} takes advantage of the fact that only con-
straining arr is sufficient to reason about the behavior of this program. We only need to
constrain the footprint of the program.

CHSL includes the notion of the separating conjunction ∗ to indicate separate parts of the
heap (or, in our case, variable store) that can be reasoned about locally. Thanks to aliasing
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restrictions of the synthesizer’s target language detailed in Sec. 3.1, any two variables can be
separated with ∗. E.g., the assertion arr 7→arrorig∗n 7→5 describes the concrete initial state.
Once we replace the programs in our bank with CHSL triples, we can now further borrow from
Separation Logic when considering evaluation sequences.

2.2 Enumeration and heaps

A bottom-up enumeration composes larger programs from smaller ones by selecting a sequence
of arguments to apply functions or operators f to. In a classical enumeration, our bank contains
programs, so if we wish to apply + to two programs in it, this is only a matter of creating the
new program p1 + p2. When executing p1 + p2 on some variable valuation, the runtime first
evaluates p1, then p2, then their addition. The classical OE enumeration duplicates this by
summing the evaluation result banked for p1 to that banked for p2. Without mutations, this
is correct for all orderings of arguments to + as all the programs evaluate from the initial state
and to the initial state, so their results can always be memoized in the bank.

Now that our bank comprises CHSL triples, however, the enumeration needs to apply f

to triples, not programs. Here, we have to be more careful. Let us consider two programs in
our space, arr[0] and arr.sort()[0] enumerated with classical OE in Fig. 1(a). In our new
bank, they are now the triples:

tr1 ={arr 7→arrorig}arr[0]{arr 7→arrorig;10}
tr2 ={arr 7→arrorig}arr.sort()[0]{arr 7→arrsort;−1}

First, we consider what applying + to a pair of triples means: applying it to (tr1, tr2) as
arguments means trying to create arr[0] + arr.sort()[0], or applying + to the program com-
ponents of the triples. However, unlike the mutation-free case, not every pair of triples with
those two programs can create this application. We expect a sequence of arguments to a
component to describe a real evaluation of those arguments.

This is akin to creating a valid composition or sequence in Separation Logic, the postcon-
dition of each argument must be equal to the precondition of the next one in the sequence;
this means all mutations are accounted for. For (tr1,tr2), this is not a problem: arr 7→arrorig
is the after-state of tr1 and the before-state of tr2, which means that their sequence mutates
the state from the precondition of tr1 to the postcondition of tr2, and they can be used in the
application of any component, e.g., +, with the values memoized in the triple, so we add the
two precomputed results 10+−1, and get:

{arr 7→arrorig}arr[0] + arr.sort()[0]{arr 7→arrsort;9}

However, we cannot compose (tr2,tr1) in the same way: arr.sort() mutated the state, chan-
ging the value of arr to arrsort, so tr1, whose memoized result was computed where arr is arrorig,
cannot follow it. Requiring arguments to a component to form a valid sequence ensures that only
valid executions are enumerated by the synthesizer. The enumerator will not try to compose
(tr2,tr1) under any binary operator, but can—and will—select (tr1,tr2) as arguments to +.
Once a new program is composed, the enumerator invokes the language interpreter to evaluate
the composition from the values of its arguments, yielding a triple containing the result and com-
pound effect of the arguments and operation. We denote this invocation the Eval inference rule.

If we partition our bank of programs by the program’s precondition, as in Fig. 2, then the
enumerator can always create correct sequences of arguments by construction, using a triple’s
postcondition to fetch all suitable next arguments according to their precondition.
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Discovering more preconditions. Let us consider the last subprogram of our target program:
arr[n - 1]. It is going to be added with arr.sort()[0], which means that for that composition
to be allowed, it must match the state after arr is sorted. Specifically, we consider the first
argument of the array dereference, which will be needed to enumerate it:

tr3 ={arr 7→arrsort}arr{arr 7→arrsort;arrsort}

Importantly, this triple will never be enumerated if the enumerator only considers triples starting
at a precondition describing the initial state, but without it we will never find the target program.

We have to ensure, therefore, that we also enumerate programs that have other preconditions.
tr3 is a necessary building block for such programs.

To this end, whenever a new assertion is discovered by the enumerator, e.g., when a mutat-
ing component is evaluated, creating a never-before-seen assertion in the postcondition, as
enumerating {arr 7→arrorig}arr.sort(){arr 7→arrsort;arrsort} does, we get ready to enumer-
ate programs that begin in this new assertion: we create tr3, which any program starting at
arr 7→arrsort will need to incorporate, and add it to the bank, which also adds arr 7→arrsort
to the bank as a precondition. The next time the enumerator selects arguments to an operator,
tr3 will be available. This lets the enumerator create programs that begin at arr 7→arrsort.

Programs with different footprints. Now that we have tr3, the first argument to the array
dereference, let us consider the second:

{n 7→5}n - 1{n 7→5;4}

We enumerate this program at the initial value of n, i.e., without the need for its precondition
to be discovered. However, when the enumerator tries to compose it with tr3 into a sequence
of arguments to [], it runs into a problem: the two triples do not make a valid sequence.
The assertion in the postcondition of the first argument, arr 7→arrsort, is different than the
precondition of the following argument, n 7→5.

However, we clearly see that these two assertions deal with separate parts of the heap, and
do not interfere with each other. This is where we draw on Separation Logic’s powerful tool: the
Frame rule. Since these are separate parts of the heap, we can use the separating conjunction
to create a unified heap in the pre- and postcondition of both triples. The more constrained
triples are now composable, so the enumerator can apply array dereference and Eval, yielding:

{arr 7→arrsort∗n 7→5}arr[n - 1]{arr 7→arrsort∗n 7→5;100}

The full derivation is shown in Fig. 3. Then similarly, the same extension—now adding n 7→5
to tr2 and nothing to the second argument—is applied to allow the enumerator to compose
the target program. This is an important strength of our technique: the same triple for n - 1
can compose with any value for arr—we will only enumerate it once!

We notice that in this case, this will discover a new assertion not as a postcondition as we did
when sort() mutated arr but as a precondition. Once the program is added to the bank, the enu-
merator will continue to enumerate more programs with this new assertion as their precondition.

2.3 Equivalence and mutation
So far, we showed how the enumerator composes programs, but we did not show how the
OE-reduction works. Now that we have a new representation of programs, we can re-define
how each triple is observed and labeled, so that the label vector suits our needs.
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Eval

Frame

Eval
{n 7→5}n{n 7→5;5}

Frame
{emp}1{emp;1}

{n 7→5}1{n 7→5;1}
{n 7→5}n - 1{n 7→5;4}

{arr 7→arrsort∗n 7→5}n - 1{arr 7→arrsort∗n 7→5;4}
{arr 7→arrsort∗n 7→5}arr[n - 1]{arr 7→arrsort∗n 7→5;100}

Frame
{arr 7→arrsort}arr{arr 7→arrsort;arrsort}

{arr 7→arrsort∗n 7→5}arr{arr 7→arrsort∗n 7→5;arrsort}

Figure 3 Using Frame and Eval to enumerate arr[n - 1]. Recall arrsort denotes the constant
value [−1,2,10,90,100] for brevity.

In classical OE, the observed value for each example is the program’s evaluation result, but
this is now insufficient: while in the precondition arr 7→ [10,100,90,−1,2] the program arr[1]
evaluates to 100, if we discard all the following programs that evaluate to 100 we will also
discard the arr[n - 1] that is evaluated on a sorted array. Likewise, n and n++ with the same
precondition are distinct in that they return the same value given the same precondition, but
have a different effect on the state.

Generally, we can see that we can label a triple with its pre- and postcondition, including
the result. Once those are identical, any programs that form a valid triple with them would be
interchangeable, i.e., can be swapped for each other with no change to a larger evaluation. In
Fig. 2, the precondition component is expressed by the precondition the triple is stored under
in the bank, while the postcondition appears above each program.

Generality of equivalence classes. The equivalence class labels above define an equivalence
relation for OE. However, in this setting, we can do even better: there are cases where we want
to discard programs even though one is not equivalent to the other. Let us consider two triples:

tr4 ={n 7→5}n - n{n 7→5;0} tr5 ={emp}0{emp;0}

where emp is the unconstrained heap.
Both triples have the same evaluation result (0), and the same effect (no effect), but different

assertions at the pre- and postconditions. But they are not completely different: if we select
a frame axiom R=n 7→5, we can bridge their difference: {emp∗R}0{emp∗R;0} is equivalent
to tr4. Under this condition, we say that tr5 is more general than tr4: it describes a program
that behaves the same over more concrete states. If we let the more general equivalence class
subsume less general ones, we further compact our representation of the space while remainting
correct. While we cannot tractably apply this additional reduction to the entire space, we can
at least discard less general programs once more general ones exist in the bank.

Temporary values and variables. This tactic cannot stand on its own: naively employing
it means tr6 = {emp}5{emp;5} subsumes tr7 = {n 7→ 5}n{n 7→ 5;5} in the same way. How-
ever, in Fig. 2 similar subsumptions do not happen: {emp}-1 {emp;−1} does not subsume
{arr 7→ arrsort}arr[0]{arr 7→ arrsort;−1} and {arr 7→ arrorig ∗ n 7→ 5}arr[n - (1+1)]{arr 7→
arrorig∗n 7→5;−1}, which are still in the bank. Why?

We notice that if these subsumptions are allowed, the programs will no longer be interchange-
able, and some will break entirely. Consider the application of ++: while {n 7→5}n++{n 7→6;5}
uses tr7 as its argument, 5++ using tr6 does not compile. Likewise, replacing arr within
arr.sort() with the array literal with arr’s value would produce a different mutation of the
heap, indicting they should be separate programs. The difference, which must be encoded into
our representation, is what is reachable from state variables, and if so, from where.
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Our evaluation result therefore comprises two components: the value returned by evaluation,
and the location of that value. tr3, then, returns arrsort@arr, and tr7 returns 5@n. This
ensures the interchangeability within ++ or sort: the new program will not only compile, it
will affect the same variable.

What, then, should be the location of a temporary variable, i.e., a variable that is not
reachable from the stack? We must consider the location’s purpose: to separate programs
enough to preserve interchangeability when the heap is mutated. Two temporary values, on
the other hand, are (inherently) interchangeable, so we do not want to over-separate them
which would inflate the number of equivalence classes in the bank. We therefore give all
temporary values the same location: ⊥. This way, tr4 and tr5 both return 0@⊥, preserving
the subsumption, and tr6 returns 5@⊥ which separates it from tr7.

Fig. 2 omits this for simplicity, but does still separate {emp} -1{emp;−1} with result
−1@⊥ from {arr 7→ arrsort}arr[0]{arr 7→ arrsort; −1} with result −1@arr[0] and from
{arr 7→arrorig∗n 7→5}arr[n-(1+1)]{arr 7→arrorig∗n 7→5;−1} with result −1@arr[3].

Defining the Solution. We are almost finished: like classical OE, we continue iteratively
enumerating programs into the bank until a solution is found. Our final step is to reconsider
the definition of a solution to a synthesis specification.

When enumerating a program in a non-mutating space with an OE-reduction using the
examples’ inputs, a solution is a program that is labeled by (i.e., that evaluates to) the provided
outputs. In SObEq this is insufficient: the enumerator can find a triple returning the correct
value in some precondition. To be correct when evaluated on the concrete example inputs,
we require that a solution’s precondition describe the concrete initial state ι. In our example,
arr 7→arrorig∗n 7→5 trivially describes ι—it is equal to it—but so does n 7→5.

Thus, to be a solution, a triple must: 1) return the values of the example outputs, and
2) have a precondition that describes ι.

SObEq is, to our knowledge, the first proof-directed synthesis algorithm that works bottom-
up. It is also the first bottom-up enumerative synthesizer for general mutating components
with a correctness guarantee: if a solution exists in the space spanned by C, SObEq will find an
equivalent solution.

3 Enumerative Synthesis and Heap Mutations

In this section we define the basic elements with which we construct SObEq: programs and
their evaluation, and the synthesis task.

3.1 Concrete Heap Separation Logic

In this section, we introduce Concrete Heap Separation Logic (CHSL), a notation for operational
semantics in the style of Separation Logic. Its syntax and two inference rules are showin in Fig. 4.

The heap. In CHSL, we use a heap notation to reason about the concrete values assigned
to variables from the input. We can reason locally about each individual variable because
SObEq’s target language does not allow assignments, and so as long as nothing is aliased at
the input—we can enforce this when generating the synthesis task—each variable is separate
from all others and can be separated from them with a separating conjunction, ∗.
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Input variables Identifiers x∈V
Literal values v ∈K
Assertion a∈A ::= emp |x 7→v∗A
Assertions a⃗,P⃗ ,Q⃗∈A×···×A
Location l∈M ::= ⊥|x |x[n],

n is an integer literal
Result r ∈R ::= v@l

Results r⃗ ∈R×···×R
Postcondition {Q⃗;r⃗}

{P⃗1}p1{P⃗2;r⃗1} {P⃗2}p2{P⃗3;r⃗2} ··· {P⃗k}pk{P⃗k+1;r⃗k}
c∈C,arity(c)=k ∀i.(c(ri

1,...,ri
k),P i

k+1)→(ri,Qi)
{P⃗1}c(p1,...,pk){Q⃗;r⃗}

Eval

{P⃗ }p{Q⃗;r⃗}
{P⃗ ∗R⃗}p{Q⃗∗R⃗;r⃗}

Frame

Figure 4 CHSL syntax and inference rules

CHSL assertions. CHSL reasons about concrete values assigned to variables. As such, a
CHSL assertion comprises heaplets of the form x 7→v where v is a concrete value.

This also means we can trivially transform a state (partial function) σ into an assertion
describing an identical heap s.t. x1 7→σ(x1)∗···∗xn 7→σ(xn) for all xi ∈dom(σ). We use the func-
tion interchangeably with its assertion equivalent, i.e., σ as a shorthand for the assertion above.

For a vector of states σ⃗, corresponding to the vector of examples E⃗ , CHSL likewise uses a vec-
tor of assertions. We therefore also define a vector separating conjunction s.t. P⃗ ∗R⃗=⟨Pi∗Ri⟩i.

Values with location. In the presence of mutations, we must also consider that some values
are reachable from our heap. As shown in Sec. 2, this is important for components that modify
their arguments (e.g. arr.sort()), especially components that return a self-reference and are
therefore composable, as in arr.sort().reverse(), where both sort and reverse mutate arr.

To support this, a result r∈R comprises two components: a value and that value’s location,
l∈M that can be a variable, a variable at a concrete index, or ⊥. We use ⊥ to indicate a value
not reachable from any variable, i.e., a temporary value. We decompose the result as r=v@l.
As with variable values, the values in results are concrete.

Triples. A triple in CHSL comprises a precondition P⃗ ∈ Ak (where |E⃗ | = k), the program
p, and a postcondition. Our postconditions have two components: i) an assertion Q⃗ ∈ Ak,
and ii) the evaluation results of p on P⃗ . Vectors of assertions and results form a conjunction:
{P⃗}p{Q⃗;r⃗} means all triples {P 1}p{Q1;r1},{P 2}p{Q2;r2},...,{P k}p{Qk;rk} hold.

We call the subset of each assertion Q whose values are different from P the effect of the pro-
gram on P . For example, in the triple {x 7→1∗y 7→2}x++ + y{x 7→2∗y 7→2;3} the effect is x 7→2.

We consider {P⃗}p{Q⃗;r⃗} to be a valid triple if it accurately tracks the evaluation of p on
P⃗ . In other words, assuming a (deterministic) small-step operational semantics for programs
the behavior of which is defined by the interpreter of the language: →: (P,A)→(R,A), we say
{P⃗}p{Q⃗;r⃗} is valid if ∀1≤ i≤k.(p,P i)→(ri,Qi).

Because SObEq will be enumerating triples, it is crucial that it can construct valid triples.

The Eval rule. When constructing a new triple, the Eval rule denotes the use of the interpreter
to ensure the resulting triple is valid. Because an evaluation of an AST node will first evaluate
its children in sequence, then use the results to evaluate the node’s operation, Eval requires
a sequence of triples. As in the classical Hoare Logic Sequence rule, Eval requires matching
midconditions. However, since we often want to form a sequence from triples where Qi ≠Pi+1,
we use the Frame rule to find a larger composed heap where the midconditions do match.

The Frame rule. Generally, all triples in the space contain only their footprint in their pre- and
postcondition. As the example in Fig. 3 shows, in this compact representation midconditions
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may not match. We recall that the frame rule allows us to reason about a larger heap by equally
extending the pre- and postcondition with an additional assertion called the frame axiom.

Fortunately, in CHSL, frame axioms are very easy to find. To prepare a pair of arguments
for Eval, then, one of two things is true: either for every i, Qi

1∪P i
2 is still a partial function

(i.e., if the same variable appears in both, it maps to the same value) and Ri
1,Ri

2 are found by
their difference, or the two triples cannot form a valid sequence.

Combining Eval and Frame. When the SObEq enumeration will apply a function or operator
f to k child triples, this will combine the two rules. Since not all valid sequences of possible
arguments to f have matching midconditions, we apply the Frame rule to the entire sequence:
given a set of k =arity(f) triples tri ={P⃗i}pi{Q⃗i;r⃗i}, Eval is applicable if there exist k frame
axioms R⃗1,...,R⃗k where Q⃗1 ∗R⃗1 = P⃗2 ∗R⃗2,Q⃗2 ∗R⃗2 = P⃗3 ∗R⃗3,...,Q⃗k−1 ∗R⃗k−1 = P⃗k ∗R⃗k. Some of
these R⃗i may be ⃗emp. Now that the midconditions of the triples match, Eval can be applied,
yielding a triple that evaluates from the new shared precondition P⃗1∗R⃗1, and computing the
result and precondition for f(p1,...,pk).

3.2 Problem definition

Since SObEq uses CHSL triples to solve a PBE problem, we must re-state the PBE problem
for CHSL. In this section we define what it means for a CHSL triple to represent our target
program, define a translation from a PBE task, and explain how additional specifications,
constraining the program’s effects on the state, can also be supported.

The Programming by Example (PBE) task is usually defined as follows: given a vector of
input-output examples E⃗ =⟨ιi →ωi⟩i, find a program p over a component set C where for every
input ιi, evaluating p on ιi, denoted JpK(ιi), is equal to the provided output ωi. We first want
to translate this into a goal of the shape {P}_{Q;r}.

Examples in CHSL. We denote the vector of input states I⃗ =⟨ιi | ιi →ωi⟩i. The direct transla-
tion of E⃗ to CHSL, then, is {P⃗}_{_;⟨ωi@_⟩i}, where ∃R⃗.P⃗ ∗R⃗= I⃗. In other words, the precondi-
tion needs to describe the initial states (it is a footprint, so it may not describe all input variables),
any postcondition will satisfy our specification, and the correct values can be at any location.

Constrainingeffect. Users may want to constrain specific mutations as well as the value. We let
the user pair with each example any constraints on the effect, e.g., the value of n must be 9, or arr
must end in its initial value [10,100,90,−1,2]. To do this, we let the user provide an effect constraint
q :V →K, constraining the target value for any variable, where if x ̸∈dom(q), x is unconstrained.

The SObEq task. A PBE user does not need to know about CHSL. Much like the original E⃗ ,
they provide a vector Φ⃗ where each φ∈ Φ⃗ is a pair of example and effect constraint: φ=(ι→ω,q).
If they are unconcerned with effects, this is identical to providing E⃗ .

We then turn Φ⃗ into a synthesis goal in CHSL:

▶ Definition 1. (SObEq synthesis goal) Given a specification Φ⃗, our goal GΦ⃗ is:

GΦ⃗ ={P⃗}_{⟨qi∗_⟩i;⟨ωi@_⟩i}, where ∃R⃗.P⃗ ∗R⃗= I⃗

The SObEq task is to find a triple {σ⃗}p{σ⃗′;r⃗} that matches GΦ⃗.
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3.3 The program space
Now that we have SObEq’s specifications, we define the space in which it performs the search.
We consider the component set C as a union of three sets: V ∪ lits∪F , where x ∈ V are the
variables in I⃗, l∈ lits are literals in the component set, and f ∈F are the functions and operators
that can be applied to subprograms (arity(f)>0). The full program space of a synthesizer with
a component set C is then every program using the components in C. We denote this program
set LCM. This set is infinite and highly redundant, e.g., contains both x + 1 and 1 + x + 0, and
in our mutating domain, both arr.sort() and arr.sort().sort().

Classical Observational Equivalence. In a problem domain with no side-effects, observational
equivalence unifies programs with the same evaluation results on the example inputs. This is ex-
pressed in the equivalence relation ≡E⃗ that deems two programs p1,p2 (observationally) equival-
ent if ∀ι→ω ∈E⃗ .Jp1K(ι)=Jp2K(ι). The OE-reduced space LCMOE is then defined using ≡E⃗ . This
idea was first suggested by Udupa et al. [59] and Albarghouthi et al. [2] and is in wide use today.

A classical bottom-up enumeration (CBE), keeps a bank of programs, and the vector of
observed results is used to label the program’s equivalence class. Only one program with each
vector is added to the bank, meaning any observationally equivalent programs are discarded.

A program space with mutations. In the presence of mutations, the space of possible pro-
grams no longer comprises only programs evaluated in the initial states I⃗. As we saw in Sec. 2,
composition in this space requires subprograms that are evaluated in a modified state.

The full program space when F includes mutations is constructed inductively, building larger
valid triples from smaller ones via applications of Eval, and the Frame rule when necessary.
We denote the possible values for each x∈V as Kx. We define the full space of programs LCM:

▶ Definition 2 (Full program space). We define the full program space LCM as
⋃

i≥0LCM(i) where
LCM(i) is defined inductively as follows:
LCM(0) ={{ ⃗emp}l{ ⃗emp;

−−→
v@⊥}|l∈ lits,v ∈K is the value of l}∪

{{σ⃗}x{σ⃗;⟨vi@x⟩i}|x∈V,σ⃗ =⟨x 7→vi⟩i,v⃗ =Kx×···×Kx}
LCM(n) =LCM(n−1)∪

{
{P⃗}f(p1,...,pk){Q⃗;r⃗}|f ∈F ,arity(f)=k,{σ⃗i}pi{σ⃗′

i;ri}∈LCM(n−1),

∃R⃗1,...,R⃗k.Eval of f on {σ⃗i∗R⃗i}pi{σ⃗′
i∗R⃗i;r⃗i} is {P⃗}f(p1,...,pk){Q⃗;r⃗}

}
Finally, given LCM, we can define the OE-reduced space that SObEq will enumerate.

3.4 SObEq: observational equivalence with side effects
As we showed in Sec. 2, classical OE’s ≡E⃗ is no longer useful for the program space in Def. 2.
We need our equivalence relation to encompass every aspect of the goal φ (Def. 1).

The generalized formalization of OE [45] defined two properties for equivalence, interchange-
ability: two equivalent programs can be used interchangeably within a larger program, and
consistency: two equivalent programs will either both satisfy or both not satisfy the specification.

To satisfy consistency we must include everything that participates in Def. 1. The value
returned by the expression, and the postcondition, which includes any constrained effect. We
also need the state on which the program will be evaluated to check whether it describes I⃗.

As we saw in Sec. 2, to satisfy interchangeability we need the location of the value as well:
while the literal [2,3,1] and a variable x whose valuation is [2,3,1] return the same value, they are
not interchangeable under a larger program like ?.sort(), where they would lead to different
postconditions. Moreover, to be able to swap a program in, its postcondition must be the same.

Combined, then, our equivalence relation simply compares the triple excluding the program:
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▶ Definition 3. (SObEq equivalence relation) The equivalence relation for Φ⃗=⟨(ιi →ωi,qi)⟩i is
{σ⃗1}p1{σ⃗′

1;r⃗1}≡Φ⃗ {σ⃗2}p2{σ⃗′
2;r⃗2} ⇐⇒ σ⃗1 = σ⃗2∧σ⃗′

1 = σ⃗′
2∧r⃗1 = r⃗2

Or in other words, equivalence does not look at the program, only at its specifications.

Subsumption of triples. Finally, we consider the generality ordering of triples and (implicitly)
of their equivalence classes, which will let us find more general programs.

In Sec. 2, we considered the two triples tr4 = {n 7→ 5}n - n{n 7→ 5; 0@⊥} and tr5 =
{emp}0{emp;0@⊥}. While tr4 and tr5 are not observationally equivalent under Def. 3, as
emp ≠ n 7→ 5, tr5 is more general than tr4: it produces the same result (0@⊥) and the same
effect (∅) from more concrete states. If tr5 can absorb tr4, we can arrive at a more compact
representation of the space. To this end, we formally define this generality: the partial order
of programs that differ by only a more general pre- and postcondition.

▶ Definition 4 (Generality ordering of triples). Given a specification Φ⃗, we define

{P⃗1}p1{Q⃗1;r⃗1}⊑Φ⃗ {P⃗2}p2{Q⃗2;r⃗2} ⇐⇒ ∃R⃗.{P⃗1}p1{Q⃗1;r⃗1}≡Φ⃗ {P⃗2∗R⃗}p2{Q⃗2∗R⃗;r⃗2}

I.e., the more general way to achieve the same result and effect is considered larger.

While ⊑Φ⃗ is clearly not an equivalence relation (the existence of a frame axiom is not
symmetrical) so it cannot be used to partition the space into classes, we notice that replacing a
triple with one that is larger according to ⊑Φ⃗ does preserve the two properties of an OE-relation,
interchangeability and consistency, in one direction. Originally [45], interchangeability states
that swapping two equivalent programs within a larger program will yield an equivalent larger
program, and consistency states that two equivalent programs either both satisfy a given specific-
ation φ or neither does. Under ⊑, however, a slightly weaker—but still useful—version holds.

Interchangeability under ⊑Φ⃗ means that given f ∈ F , arity(f) = k, k triples trj =
{P⃗j}pj{Q⃗j ;r⃗j}, 1≤j ≤k, and k assertions R⃗j s.t. Eval can be applied on f and {P⃗j ∗R⃗j}pj{Q⃗j ∗
R⃗j ;r⃗j} to infer {P⃗}f(p1,...,pk){Q⃗;r⃗}, and a triple tr′

i ={P⃗ ′
i }p′

i{Q⃗′
i;r⃗′

i} s.t. tri ⊑Φ⃗ tr′
i for some

1≤ i≤k, then:
1. There exists R⃗′

i s.t. Eval can still be applied on f when replacing {P⃗i∗R⃗i}pi{Q⃗i∗R⃗i;r⃗i}
with {P⃗ ′

i∗R⃗′
i}p′

i{Q⃗′
i∗R⃗′

i;r⃗′
i} to infer {P⃗ ′}f(p1,...,p′

i,...,pk){Q⃗′;r⃗′}, and
2. {P⃗}f(p1,...,pk){Q⃗;r⃗}⊑Φ⃗ {P⃗ ′}f(p1,...,p′

i,...,pk){Q⃗′;r⃗′}

Consistency under ⊑Φ⃗ means that for goal G, if {P⃗1}p1{Q⃗1; r⃗1} ⊑Φ⃗ {P⃗2}p2{Q⃗2; r⃗2},
then if there exists R⃗1 s.t. {P⃗1 ∗ R⃗1}p1{Q⃗1 ∗ R⃗1; r⃗1} matches G, then there exists R⃗2 s.t.
{P⃗2 ∗R⃗2}p2{Q⃗2 ∗R⃗2;r⃗2} matches G. It’s important to notice that the ⇔ of the equivalence
version of consistency is now ⇒: if {P⃗1}p1{Q⃗1;r⃗1} is a solution, so is {P⃗2}p2{Q⃗2;r⃗2}, but since
{P⃗2}p2{Q⃗2;r⃗2} is more general P⃗2 might describe I⃗ even if P⃗1 did not.

▶ Lemma 5. Interchangeability and consistency are preserved under ⊑.

The proof of Lemma 5 is found in Sec. A.1.
With the program space LCM and the SObEq equivalence relation and generality ordering,

we are ready to search for a program, i.e., to construct the OE-reduced space via enumeration.

4 The SObEq Enumeration

In this section, we describe the construction of the OE-reduced space. We first describe
the structure of the space, then the enumeration, and finally how the enumeration can find
equivalence classes that, by virtue of their generality, subsume other equivalence classes.



K. Ferdowsi and H. Peleg 7:15

ClassicalBottom-UpEnumeration. A bottom-up enumeration consists of applying each f ∈F
to k-tuples of child programs from the bank of previously seen programs, where arity(f)=k.
Each newly enumerated f(p1,...,pk) is evaluated, and if an equivalence class labeled by its ob-
served values is not yet represented in the bank, it is added to the bank. Enumeration is done ac-
cording to some ordering, e.g., height, number of AST nodes, or probability score [7]. This is usu-
ally facilitated by the structure of the bank to allow for easier retrieval of relevant child-programs.

The precondition bank. In our setting, we want to bank discovered triples according to their
precondition: a bank section a⃗ contains all discovered programs whose precondition is a⃗.

There are two reasons for this: first, when composing a k-tuple of arguments to f , finding a
sequence Eval is enabled for can be done constructively, without considering all possible k-tuples.
For a sequence of length k−1 with postcondition assertion Q⃗k−1, we can preemptively rule out
assertion vectors a⃗ with different values assigned to a variable appearing in both Q⃗k−1 and a⃗, and
will never form a valid sequence. In Algorithm 1 we call this construction CollectChildren.

Second, and even more importantly, this lets us track what assertions have been discovered
by the enumeration. If the enumeration produces a triple {a⃗}p{a⃗′;r⃗} where a⃗ or a⃗′ have not
yet been seen by the enumeration, then a new bank will be initialized for a⃗ (or a⃗′, resp.).

Initializing a new bank. A new assertion a⃗ can be discovered by the enumeration in
one of two ways, as a pre- or a postcondition. For example, the derivation in Fig. 3
combines {n 7→ 5}n - 1{n 7→ 5; 4} with {arr 7→ arrsort}arr{arr 7→ arrsort; arrsort} into
{arr 7→arrsort∗n 7→5}arr[n-1]{arr 7→arrsort∗n 7→5;100}. Both the compound pre- and post-
condition might be new for the enumeration, in which case they do not have a section in the bank.

If a⃗ is discovered as a precondition, we naturally add a section of the bank to bank the newly
enumerated program. If a⃗ was discovered as a postcondition, then it may be a result of an effect,
which means some of its atomic heaplets may not be in the bank yet. In this case, we create
a section for a⃗ in the bank, but also add its atomic heaplets to the bank if they are new: we
construct {ax}x{ax;rx} where ax =⟨x 7→ai(x)⟩i and rx =⟨ai(x)⟩i for each x in a⃗, and add it to
the bank if ax is not yet in the bank. In Algorithm 1, this is collectively denoted as InitBank(⃗a).

At the beginning of the enumeration, the bank is trivially initialized with the empty
assertion ⃗emp for literals and with ⟨x 7→ ιi(x)⟩i for each variable x∈V.

Enumerating terms. The main enumeration is not very different from the CBE enumeration:
the enumerator selects f ∈F with arity(f)=k, and composes as arguments for it all k-tuples
of triples {P⃗i}pi{Q⃗i;r⃗i} that Eval can be applied to from triples already in the bank.

The application of Eval then constructs a new triple {P⃗}f(p1,...,pk){Q⃗;r⃗} that can then
be observed: we use its pre- and postcondition assertions and its results as the label for its
equivalence class. This label is searched for in the bank for precondition P⃗ . If the bank for
P⃗ has an equivalent program, {P⃗}f(p1,...,pk){Q⃗;r⃗} is discarded, and if no equivalent program
was previously seen, {P⃗}f(p1,...,pk){Q⃗;r⃗} is added to the bank for P⃗ .

We also have at our disposal ⊑Φ⃗ (Def. 4), which means we reduce the space even further.

Using more general triples. We want to use the ⊑Φ⃗ relation to let more general triples subsume
less general ones in the course of enumeration, even when they are not strictly equivalent.
However, this can happen in one of two cases: (i) the less general triple being enumerated after
the more general triple is in the bank, and (ii) a more general triple being enumerated later.

Handling (i) is simple enough: when enumerating {σ⃗}p{σ⃗′;r⃗}, even if there is no representat-
ive for the equivalence class of {σ⃗}p{σ⃗′;r⃗}, the enumerator checks whether some {σ⃗2}p2{σ⃗′

2;r⃗2}
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Algorithm 1 The SObEq enumeration

Input :Set of specifications Φ⃗=⟨(ιi →ωi,qi)⟩i, variables V specified in example inputs
Output :Program p composed of components C s.t. p that satisfies Φ⃗
Globals: Precondition bank bank, mapping from assertion to an OE bank

1 initialAsserts := { ⃗emp}∪{⟨x 7→ ιi(x)⟩i |x∈V}
2 foreach a⃗∈ initialAsserts do InitBank(⃗a);
3 repeat // until timeout
4 foreach f ∈F , arity(f)=k do
5 foreach {σ⃗1∗R⃗1}p1{σ⃗′

1∗R⃗1;r⃗1}···{σ⃗k ∗R⃗k}pk{σ⃗′
k ∗R⃗k;r⃗k}∈

CollectChildren(bank,k) do
6 {σ⃗}p{Q⃗;r⃗} := Eval (f,{σ⃗1∗R⃗1}p1{σ⃗′

1∗R⃗1;r⃗1}···{σ⃗k ∗R⃗k}pk{σ⃗′
k ∗R⃗k;r⃗k})

7 if ∃R⃗.{σ⃗∗R⃗}p{Q⃗∗R⃗;r⃗} matches GΦ⃗ then return p;
8 if ∀a⃗∈keys(bank).∃R⃗.(⃗a∗R⃗= σ⃗∧R⃗⊆Q⃗)⇒ (⃗a,Q⃗\R⃗,r⃗) ̸∈bank(⃗a) then
9 if σ⃗ ̸∈keys(bank) then InitBank(σ⃗);

10 bank(σ⃗) += {σ⃗}p{Q⃗;r⃗}
11 end
12 if Q⃗ ̸∈keys(bank) then InitBank(Q⃗);
13 end
14 end
15 until timeout;

s.t. {σ⃗}p{σ⃗′;r⃗}⊑Φ⃗ {σ⃗2}p2{σ⃗′
2;r⃗2} already exists in the bank, and if it does, discards {σ⃗}p{σ⃗′;r⃗}.

This is efficiently done by changing the assertions to more general ones and searching the bank.
Handling (ii), however, is a larger feat. In theory, once we enumerate the more generic triple

{σ⃗}p{σ⃗′;r⃗}, we can replace all less-general triples {σ⃗2}p2{σ⃗′
2;r⃗2} with {σ⃗}p{σ⃗′;r⃗}, propagating

this change to any compositions that use p2. This would be prohibitively costly on its own
before the implications of Lemma 5: this replacement can weaken the pre- and postconditions
of compositions, changing their place in the bank. This cascade might even weaken the
precondition a triple that did not satisfy Φ⃗ enough to describe I⃗ and become a solution. As
such, we elect to only incorporate (i) into SObEq.

4.1 The enumeration algorithm
We can now compose the complete SObEq enumeration, seen in Algorithm 1.

Lines 1–2 of the algorithm initialize the enumeration by calling InitBank, described above,
to create the basic programs for ⃗emp and for each of the variables’ initial values.

Line 4 selects the next component for application; components with an arity of 0 are handled
exclusively by InitBank. Next, on line 5 CollectChildren constructs all k-tuples of children
that Eval is enabled for. Since it is a part of the construction process, CollectChildren returns
each k triples already updated with the frame axioms R⃗1,...,R⃗k to a unified composed heap.

Line 6 then applies Eval to construct the new triple. If the new triple is a solution to the
task, it will be returned by line 7. If not, line 8 checks whether an equivalent or subsuming
program already exists in the bank via its equivalence class label: if some existing key in
the bank can be made equivalent to the current program via a frame axiom. For example,
the program {n 7→ 5}n − n{n 7→ 5;0@⊥} will be enumerated, and will then be tested twice:
for R = emp, (n 7→ 5,n 7→ 5,0@⊥) will be searched for in the bank, and also for R = n 7→ 5,
(emp,emp,0@⊥) will be searched and found (for the program 0), so {n 7→5}n−n{n 7→5;0@⊥}
is discarded. A precondition a⃗ in the bank is deemed relevant if there exists a frame axiom
R⃗ s.t. R⃗ both matches a⃗ to σ⃗ and all values in R⃗ are unchanged in Q⃗ (i.e., R⃗ truly is a frame).
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Every a⃗ in the bank lookup uses the relevant equivalence class label, with a⃗ as its precondition
and subtracting the frame axiom from its postcondition assertion. If no triple is found, the
new triple is added to the bank. If either the pre- or postcondition assertion do not exist in
the bank, InitBank is called for them to generate triples for their variables.

SObEq as a base enumerator. Many synthesizers [5, 16, 36, 45] use a base OE enumeration
of expressions to synthesize additional language constructs, e.g., conditionals, higher-order
functions, and assignments. These techniques are parameterizable in their base enumerator,
and so could leverage SObEq to expand their target language.

Correctness of SObEq. We show that Algorithm 1 is correct: that if a solution p exists in
the unreduced space, SObEq’s enumeration will find a solution observationally equivalent to
p or more general than p.

▶ Theorem 6 (Correctness of SObEq). If a valid solution {σ⃗}p{σ⃗′; r⃗} to goal GΦ⃗ exists in
LCM, then there exists {σ⃗′′}p′{σ⃗′′′;r⃗′} that matches GΦ⃗ in the SObEq-reduced space, and it is
reachable by SObEq’s enumeration.

In Sec. A.2 we prove Theorem 6 in two steps: first we define the (unreduced) space reachable
via enumeration and show that any solution will still be in that space, then we apply the
reduction of ≡Φ⃗ to the space, defining the SObEq-reduced program space LCMS , and prove that
any solution will have an observationally equivalent or more general under ⊑Φ⃗ solution in LCMS .

5 Implementation

We implemented a SObEq synthesizer for JavaScript programs in 3,700 lines of Scala code. The
set of functions and operators F contains 54 components for integers, strings, arrays, and sets,
including nine mutating operations: postfix increment for integers, the array functions sort,
reverse, splice, push, pop, shift, and the set functions add and delete. JavaScript strings are
immutable, so F includes no mutating components for strings. F also includes a sequence
operator for any two expressions. We allow a task to provide additional string constants for
lits, common in benchmarks from the literature [4, 7] or interaction models [16, 17].

Preserving immutability. Effect constraints in Φ⃗ can specify that a variable has not changed
in the postcondition of the solution. But effect constraints cannot distinguish between, e.g.,
x and --(++x) because we only reason about the pre- and postcondition, not the path between
them. This is generally desirable as it marks --(++x) as redundant, but this will only happen
when applying --. The user may want x to always be immutable.

This can be enforced by the enumeration. We add to our task specifications the ability to
mark a variable as immut. Once the user specifies x as immutable, there is no reason to construct
++x at all: a triple {σ⃗}p{σ⃗′;r⃗} where ⟨σi(x)⟩i ̸=⟨σ′

i(x)⟩i is discarded immediately, and σ⃗′ is not
initialized in the bank, since any programs with the precondition σ⃗′ assume a mutation of x.

Goals without an output. Under CHSL it is possible to express a goal that has no specified
output, only a specified effect. This is desirable when, e.g., specifying that a value is inserted into
a list, but what the insertion returns is irrelevant. If a benchmark has no specified outputs, i.e.,
Φ⃗=⟨(ιi,qi)⟩i, we create the synthesis goal GΦ⃗ ={P⃗}_{⟨qi∗_⟩i;_}. The lack of an output does
not change anything in how programs are enumerated and the goal is matched in the same way.
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6 Experimental Evaluation

We evaluate SObEq on our implementation. All our experiments used a server with Intel Xeon
Gold 6338 2 GHz1 and 128GB of RAM, with the JVM maximum heap size set to 110 GB.

Research Questions. We aim to answer the following research questions:
RQ1 How does SObEq compare to the state-of-the-art in syntax-guided synthesis of heap

mutations?
RQ2 What is the overhead of SObEq compared to a classical OE enumeration?
RQ3 How effective is SObEq at pruning the space of programs?
RQ4 How does SObEq compare to enumerating with concrete states?

6.1 Benchmarks and baselines
We evaluated SObEq on a set of 63 benchmarks, curated from previous synthesizers [7, 16, 22, 52],
programming exercises on LeetCode.com, and questions on StackOverflow.com. We dis-
carded benchmarks that use types other than strings, arrays and sets, i.e., that would be
inherently unsupported by our implementation. As SObEq supports a straight-line sequence
of expressions, we also discarded benchmarks from Shi et al. [52] and Ferdowsifard et al. [16]
if their solution used assignments to intermediate variables, loops, or conditionals.

We split the benchmarks into two sets: ▷ May Mutate: 45 benchmarks that have a non-
mutating solution in C. ▷ Must Mutate: 18 benchmarks that require mutation: benchmarks
with a non-empty effect constraint or cannot be solved without mutation in C. Of these, five
are benchmarks from May with a constrained effect, ruling out non-mutating solutions. For
RQ2, we also create ▷ Pure: a version of May where all variables are marked as immut.

On average, May benchmarks have 2.8 examples (min 1, max 4) and 1.4 variables (min 1,
max 3). Must benchmarks have 2.7 examples (min 1, max 5), 2.3 variables (min 1, max 4), and
1.2 variables specified in the effect (min 0, max 2). Five Must benchmarks have no specified
outputs. More information about our benchmarks is provided in Sec. B.

Selecting a baseline. We considered several synthesizers as baselines for SObEq, ruling out
synthesizers built for a single example [22], synthesizers that mutate by assigning synthesized
pure expressions [16, 17, 59], and tools hinging on Java’s rich type system [15, 61]. FrAngel [52]
is the current state of the art in synthesis of general programs with heap mutations: it is
specified with input-output examples, it has the same ability as SObEq to declare a variable as
immutable, and its stochastic search carries no additional requirements for specification other
than the ability to evaluate—just as SObEq does. This makes it the most suitable baseline.

FrAngel as a baseline. FrAngel targets Java collection implementations, which have many
more methods than their JavaScript counterparts. This means FrAngel and SObEq can yield
solutions that are entirely incomparable. To ensure an apples-to-apples comparison, we created
new Java classes that mimic JavaScript types in Java, recreating the same C used by SObEq’s
implementation. We then defined our benchmark set over these types.

In addition, in order to force FrAngel to create a straight-line sequence of expression
statements as SObEq does, we also removed from its enumeration loops, conditionals, and assign-

1 This processor has 32 cores/64 threads, but our implementation is single-threaded.
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Figure 5 RQ1: Comparing SObEq’s solutions to FrAngel’s on size (left, center) and quality
(right). Solution sizes are per-benchmark: each SObEq solution has up to five corresponding FrAngel
values. Above the line means SObEq is smaller. We consider both the final results (left) and solutions
before postprocessing/cleaning steps (center). Solution quality (right) indicates the percentage of
solutions with overfitted or spurious operations, determined by manual inspection (lower is better).

ments. Notice that removing choices from its random sampling only improves FrAngel’s odds of
finding a solution; before this additional change, FrAngel’s run times were considerably worse.

FrAngel also has the option to set inputs as immutable, which let us encode immut variables,
and an option to set a target value for an input, which we used for encoding effect constraints
in the benchmark. This means FrAngel can run on every benchmark in SObEq’s suite.

Selecting timeouts. We consider two timeouts for our runs. First, we set our timeout at
60 minutes, extending the original 30 minute timeout used to evaluate FrAngel. However,
since we aim SObEq to be used in interactive systems, and by other OE-based systems as the
base enumerator, we also consider results at an interactive timeout or a timeout needed for the
synthesizer to run in a user-facing tool and not create a disruptive interruption [43]. Building
on recent interactive synthesizers, we choose 7 seconds as our interactive timeout.

6.2 RQ1: Comparison to FrAngel
We compare SObEq to state of the art FrAngel, using an equivalent component set as detailed
in Sec. 6.1. FrAngel’s algorithm is stochastic, so we ran FrAngel five times on each of the
63 benchmarks. We consider a benchmark solved if the synthesizer returns a solution that is
correct on all examples. While some benchmarks from the literature contained a gold standard
solution, we only used those as part of the analysis of result quality. We compare the quality
of SObEq’s solutions to FrAngel on three counts: the size of the solution, is it overfitted, and
does it contain spurious operations. These are shown in Fig. 5. In addition, we compare the
run times of the two tools at both an interactive 7s and a one-hour timeout.

Size of the solution. While the size of solutions is not, in itself, a good proxy for quality, it is
telling in combination with overfitting and spurious operations. SObEq postprocessed solutions
had an average of 6.2 AST nodes at an interactive timeout and 6.9 at a 1-hour timeout (max
14, 25, resp.) where Must benchmarks were generally smaller—5.7 nodes at the interactive
timeout and 6.1 in an hour—compared to May benchmarks—6.4 and 7.1 nodes.

The left and center of Fig. 5 show the AST size for each SObEq solution compared to each
of FrAngel’s solutions for the same benchmark. Overall, FrAngel’s solutions are much larger
than SObEq’s. There are two benchmarks where SObEq’s solution is considerably larger than
FrAngel’s: Is All Positive? (originally from FrAngel), both SObEq’s and FrAngel’s solutions
were overfitted. In Get first name from name with comma (originally from Probe [7]), FrAngel
returned two overfitted solutions similar to SObEq’s, both appearing closer to the diagonal
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line, and three times found a solution closer to the gold standard solution, which is shorter,
though never the gold standard solution itself. (The two identical solutions and three identical
solutions overlap in Fig. 5.) An interesting trend in SObEq’s solutions was that the enumeration
order favored extracting postfix increment to a sequence. E.g., instead of buffer[idx++]++, idx
SObEq returns the larger but functionally identical buffer[idx]++, idx++, idx.

Overfitted solutions. We define overfitted solutions as solutions that do not generalize beyond
the provided examples. This was determined by manual inspection of both SObEq and FrAngel
solutions, and with reference to task descriptions and gold standard solutions, if they exist.

Two SObEq solutions were overfitted, and one additional benchmark was close to a gold
standard solution for the task, but since all its inputs were of length 4, it replaced str.length in
the gold standard solution with 4. Altogether, 3 of SObEq’s 54 solutions were overfitted (6%).
Of 279 FrAngel solutions (up to five per benchmark, which sometimes differ) 47 were overfitted
(17%). As the right of Fig. 5 shows, both tools were more prone to overfitting in May benchmarks.

We bring several examples of FrAngel’s overfitted solutions here.
For example in the Max and Min benchmark, a simplified version of the example in Sec. 1,

all four solutions (one run timed out) are overfitted and different. Two of them are:
return arr.join(arr.join(Str(""))). replaceAll(Str(""), Str("␣"))

.concat(arr.join(Str(""))). indexOf(arr.slice(Int(0), Int(1)). join(Str("")));

where the result number (max plus min) is generated by indexOf, and
arr.reverse ();
return arr.join(arr.sort (). join(Str(""))). replaceAll(Str(""), Str("␣")). replace(

arr.join(arr.join(Str(""))). replaceAll(Str(""), Str("␣")), Str("␣")
). length ();

where it is generated by the length of a string.
We also consider FrAngel’s results on the three benchmarks that SObEq overfitted on:

For the Is All Positive? benchmark mentioned above for its large solutions, both SObEq and
FrAngel overfit to the examples in two different ways. FrAngel overfit all give solutions,
returning true only for arrays where the smallest element is 1, and SObEq looked for a ’-’
in an overfitted location in the printed array. For get from name with comma, four of five
FrAngel solutions were not overfit. The fifth is:
return _arg_0.split(Str(",")). sort (). slice(Int(1). subtract(_arg_1),_arg_1).join(Str(""));

where the input string is split into words but then sorted before extracting the 1-_arg_1th word.
This happens to be true because all example inputs have a decreasing lexicographic ordering of
the words. In Negative Index Of, where SObEq string lengths to 4, three of FrAngel’s solutions
are not overfitted, but two rely on string < comparisons to between variables and constants.

Spurious operations. We define spurious operations as terms in the AST that do not con-
tribute to reaching the target values: e.g., sorting an already-sorted list, mutating a temporary
value that is then discarded, etc. Of the 279 FrAngel solutions, 37 had spurious operations
(13%). We bring a few examples of these here.

One of the solutions FrAngel found for the buffer-add benchmark was:
arr.splice(beg++, 1, toadd). reverse ();
return end + 1;

Here, splice removes a sub-array from arr, replaces it with toadd, and returns it. The solution
then calls reverse() on this temporary value, which is immediately discarded.

Likewise, in three of the five solutions to rotate queue:
mod.equals(inp.push(inp.shift ()));

where input variable mod is compared to the result of the target program (shifting the first
element out of the array and pushing it back in at the end).
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Figure 6 RQ1: The number of benchmarks SObEq and FrAngel solve over time. FrAngel is

stochastic: median run for each benchmark shown by line with best and worst runs as range.

For set add-delete, which asks for an in-place mutation of a the set seen, one solution is:
seen.delete(s2). compareTo(seen.add(s1).has(null ));

where both has and compareTo are useless, computing a result that is not returned.
And, of course, this problem is not disparate from overfitting; the only successful run of

FrAngel for fill fibonacci window found this solution:
out.reverse (). spliceReplace(

Int(1),
out.concat(out). length (). subtract(

Str("␣"). concat(out.join(Str(""))). lastIndexOf ((new IntArray(Int(1))). join(Str("")))
) ). shift ();

where reverse().spliceReplace(1,_) is a consistent, if odd, way to remove the first element and
add something after the second element by swapping the elements and then replacing the (now)
second one. The second argument to splice, which is expected to compute the next fibonacci ele-
ment, overfits to the examples, and shifting on the discarded return value of splice is spurious.

SObEq, in contrast, had no spurious operations. Some are avoided thanks to OE: FrAngel
can draw programs that perform round trip operations like reversing multiple times (3 of 5
solutions to the example from Sec. 1 do this) or sort a sorted list. Enumerating with OE
discards these, as they return the heap to a state it was already at and return the same value.

Other spurious operations are avoided because of the implicit bias of a bottom-up search
toward small programs: the program inp.push(inp.shift()) already satisfies the input, so
a bottom-up search would not try to compose it into a larger program adding on spurious
operations. Likewise, the enumeration would try to compose arr.splice(beg++, 1, toadd) to
end + 1 before trying it with the larger arr.splice(beg++, 1, toadd).reverse().

Runtimes. We compared SObEq’s runtimes to FrAngel’s best, worst and median perform-
ance on each benchmark in Fig. 6. In an interactive timeout, SObEq outperforms FrAngel
for the majority of the 7 seconds. At the 7s limit, SObEq solves 45 benchmarks, 7 benchmarks
more than FrAngel’s median run, whereas FrAngel solves between 34 and 45 benchmarks.
We also notice the main disadvantage of FrAngel, which is the variance introduced by the
stochastic algorithm: a difference of 30% between its best and worst cases. At the 1-hour
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Figure 7 RQ2: Comparison with CBE: time to termination for each Pure benchmark with SObEq

compared to a classical bottom-up enumeration. Points at (timeout,timeout) not shown.

timeout, SObEq solves 54 benchmarks, compared to FrAngel’s 53–60 (median 55).
Fig. 6 separates benchmarks into sets to ensure performance is not at the expense of one set

of benchmarks over the other, important for a general-purpose synthesizer. At an interactive
timeout, SObEq performs on Must benchmarks as well as FrAngel’s best run, both solving 12
of 18 benchmarks, and solves one more than FrAngel’s median run of 11. For May benchmarks,
SObEq solves 33 of 45, while FrAngel solves between 25 and 33 (median 27). After an hour,
SObEq outperforms FrAngel’s median run for Must benchmarks, solving 15 benchmarks to
FrAngel’s 14 and is within FrAngel’s range for both benchmark sets.

To answer RQ1, SObEq returns higher quality solutions than FrAngel at comparable
runtimes, without the nondeterministic variance in both time and expected solution.

6.3 RQ2: Overhead of SObEq
A more general algorithm inevitably carries an overhead on a (now) special case compared to
specialized algorithms for that case. This is often because of additional work by an algorithm
making fewer assumptions, but in OE this can also take the form of a more refined equivalence
relation, which unifies fewer programs creating a bigger space to explore. We wish to measure
this overhead in order to quantify the cost of the changes made to support mutations in SObEq.

If C has no mutating components, SObEq would not discover assertions outside the initial
preconditions and their compositions. Such a search space is directly comparable to a clas-
sical bottom-up enumeration (CBE). This lets us measure the cost of the more fine-grained
equivalence classes caused by using results, not just values, in equivalence class labels, and the
additional overhead of creating a compound heap for sub-programs using different variables.

To measure the overhead, we restricted our C to only non-mutating components, and
compared its performance on Pure benchmarks to an enumerator that uses only the initial
concrete state and uses the classical value-based equivalence relation for an OE-reduction.
This is equivalent classical OE with a height-based enumeration. By removing the mutating
components for this evaluation, we avoid the correctness issues in classical OE, while controlling
for performance differences caused by having different grammars.

In this restricted context CBE outperforms SObEq for most benchmarks (time comparison
shown in Fig. 7). In an interactive timeout, CBE solved the benchmarks an average of 1.52
times faster (median 1.5). CBE was also able to solve one additional benchmark, Max and Min,
within the 7s timeout whereas SObEq took 10.5s, and it is therefore not shown in Fig. 7. The
biggest difference, where CBE was 2x faster or more (up to a maximum of 2.16 times faster),
were all in benchmarks with runtimes of under 130ms for both enumerators.

In the full hour, CBE solved the benchmarks an average of 1.48 times faster (median 1.5),
and finished with a two-benchmark lead: there are three benchmarks CBE solved that SObEq
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Figure 8 RQ3: Run times of disabling different pruning mechanisms within SObEq: any OE, OE

outside the initial state, and discarding programs according to ⊑.
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Figure 9 Handling of programs seen in the space of each benchmark (percentages plotted, no.
programs in text). Benchmarks where mutation cannot occur and timeouts plotted separately.

did not, and one benchmark that SObEq solved and CBE did not.
For RQ2, we find that the overhead of SObEq’s more fine-grained equivalence

classes and creating compound heaps is not negligible compared to CBE.

6.4 RQ3: SObEq’s effectiveness in pruning
To test SObEq’s effectiveness at pruning its space we compare SObEq to two ablation enumera-
tions: 1. No-OE : an enumeration that discards no programs, i.e, enumerates LCMreach. 2. Pure-
OE : an enumeration that only performs OE on pure programs, i.e., fully enumerates the space
outside preconditions that cover the initial state. Additionally, to measure the effect of subsump-
tion, we also add 3. Subsume-Post: an enumeration with the SObEq OE-reduction, but no sub-
sumption during enumeration, only as postprocessing of results. The results are shown in Fig. 8.

It is, of course, unsurprising that No-OE performs poorly: with no reduction of the space,
few programs are feasible, and this version solves only 28 benchmarks within 7s, diverging
completely after 10 minutes. Pure-OE is an interesting case: testing whether it should prune
a program required computing its effect, an expensive operation that leads Pure-OE to be
considerably slower. At the 1-hour limit, Subsume-Post does as well as SObEq. However, it
lags a little behind SObEq for most of its run, having solved one fewer benchmark at 7s.

In summary, both the application of OE to the entire space and the application
of subsumption help SObEq’s performance, particularly in an interactive timeout.

We also looked at what happens to the discovered programs across runs of SObEq, shown
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Figure 10 RQ4: Comparing an enumeration with preconditions to an enumeration with concrete

states. Points at (timeout,timeout) not shown in (c).

in Fig. 9, specifically to gauge how many programs are discarded and how many are subsumed
by a more general program that already exists in the bank. We separate out runs that time out
and benchmarks where all input variables are strings, i.e., no mutation is possible. In the latter,
the number of mutating programs pruned is trivially 0, but subsumption still takes place.

On (weighted) average, only 3% of programs seen by SObEq are added to the bank (med
14%, min 0.1%, max 42% of the programs). 66% on average are pure programs pruned by
equivalence (med 72%, min 2%, max 99.98%), and another 30% are mutating programs pruned
by equivalence (med 1.5%, min 0%, max 90%). Finally, an average 0.2% of the programs are
pruned by subsumption (med 0.4%, min 0.00002%, max 8%). While the ratios vary, each
of the pruning methods in SObEq is significant for some of the benchmarks.

6.5 RQ4: Enumerating with preconditions vs. concrete states
Finally, we examine the effect of the local reasoning in SObEq’s enumeration. Composing
partial heaps takes effort, but how costly is it, and does it allow more benchmarks to be solved?
To test this, we created a version of SObEq where instead of footprints, preconditions are
always full concrete states. We compare this to SObEq’s enumeration in Fig. 10.

For most benchmarks, both enumerations perform similarly with concrete states slightly
faster. We expected to see this as an effect of the overhead of composition, but it is also
caused by pure programs being banked in one main state, which changes the enumeration
order favorably for May benchmarks. If we consider only Must benchmarks, SObEq overtakes
the concrete state enumeration after 1.5s and stays ahead for the entire 1-hour run.

Three benchmarks are noteworthy in this experiment. The concrete state enumeration times
out on our overview example (benchmark Max and Min with n) while SObEq solves it in under
5s. Two more, partition k largest and get range loopy while, SObEq solves in 90ms and 4.6s, resp.,
and enumerating with concrete states takes 5min and 32min, resp. All three share the need
to use multiple variables after one is mutated, which means subprograms already enumerated
with the unmutated variable do not make a valid sequence and need to be re-enumerated.

To conclude, SObEq’s local reasoning is faster for benchmarks that need to mutate,
and is not significantly slower for other benchmarks.

7 Related work

Syntax-andComponent-GuidedSynthesis. Syntax-Guided Synthesis (SyGuS) [3] is a form of
the synthesis problem providing a specification along with a grammar defining its program space.
It can also describe a form of synthesis where programs are constructed by syntax rules. The
latter is essentially identical to Component-Based Synthesis, where the synthesizer is provided
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with a list of functions and operations spanning the program space. Both of these formulations
are tackled by many synthesis strategies: enumerative [7, 9, 14, 22, 25, 28, 34, 35, 52, 54, 62],
SMT [1, 6, 30, 50] and SAT [56, 58] based, by traversing constructed representations of the
space such as VSAs [31, 33, 63], version spaces [53] and Petri-nets [15, 24].

Proof-directed synthesizers. A specific form of enumerative synthesis is one that attempts to
find a proof for a proof goal, where the proof dictates a program. This idea is not new [57], and
some deductive type-driven synthesizers describe their search as a proof search [24, 42]. Other
works’ goals are more expressive than types: refinement types [48], relational specifications [32],
select/update operators [41], Separation Logic, and even natural language [10]. Importantly,
proof searches are overwhelmingly deductive, searching the proof space top-down. To our
knowledge, SObEq is the first synthesis proof search that enumerates the proof space bottom-up.

Synthesis with Separation Logic. Separation Logic proofs are a popular vehicle for proof-
directed synthesis. They have been successfully used for parallelizing non-parallel code [8], but
are most often used to synthesize heap-manipulating programs. SuSLik [49] performs a deduct-
ive search with inferences about the heap to generate programs performing pointer operations.
Cypress [29] extends this with the ability to synthesize recursive auxiliaries, ROBoSuSLik [11]
extends it with read-only borrows, and RusSOL [20] applies it to Rust programs, leveraging
Rust’s type system to simplify the required specification from formal assertions to functional
annotations of Rust functions. All of these accept assertions as their specification, hinge
on manually-crafted inference rules, and employ solvers. SObEq, in contrast, works on
input-output examples and relies only the generic Eval rule in conjunction with an interpreter.

Observational equivalence. Observational Equivalence [2, 59] is a popular way to reduce the
size of the space when enumerating bottom-up. Originally OE works on examples, but RESL [45]
generalized it to other specifications on programs as well; this generalization also introduced the
notions of interchangeability and consistency that SObEq’s correctness relies on. SyMetric [18]
relaxes OE to observational similarity by choosing representatives via clustering instead of
equivalence, then repairing the resulting program. While this compacts the space like SObEq’s
subsumption, correctness of SyMetric’s solutions hinges on the success of its repair step.

Many of the synthesizers that use OE only synthesize pure programs [2, 7, 40, 45, 46, 60] (we
include [45] in this list, despite its misuse of JavaScript’s Array.sort), others employ synthesis
with OE to produce pure expressions that are then used in assignments or other larger mutating
expressions [16, 17, 37, 38, 59], creating a top-level program with memory mutations.

Arborist [36] and Lens [47] relax the purity assumption in interesting ways. Arborist
tackles the specific problem of dependent loops (e.g., fold) where the composition of smaller
programs discovers new inputs and changes the equivalence classes. Arborist uses finite tree
automata to unify programs without discarding them, which allows it to iteratively break up
equivalence classes. Arborist finds a solution if its iterative refinement terminates. Lens take
advantage of its target domain (straight line assembly code) to treat operations as having no
arguments, making sequences the only composition. In this representation, OE values are full
register valuations, and synthesis of state-mutating programs reduces to the OE enumeration
used for pure programs. Both hinge on the ability to represent equivalence classes without
discarding any programs using, implementing OE without a bank, which is only tractable
under very strict assumptions on the set of components and on values.
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Synthesis with heap mutations. The problem of synthesizing mutating snippets has been
worked around in many ways. SL proof-directed approaches assume a limited target language
of mutations available to the proof. Sketch[56], Transit [59], SnipPy [17], Simpl [55] and
Cozy [37, 38] assume expressions are pure, then use them in specific mutating contexts validated
by other means (e.g., SMT). SyPet [15] and EdSynth [61] rely on types for getting programs, and
only then evaluate them. Likewise, FrAngel [52] draws random programs, then evaluates them.

LooPy’s [16] problem statement bounds the intermediate mutations, and is to enumerate
independent paths between these states. Similarly Lens [47] reduces all registers to 3-bit and
constructs the full space of intermediate states. Cobalt [41] also separates pure expressions
from mutations using provided API annotations. Toshokan [27] encodes the specifications for
mutating methods as two versions of the function, one for changes to the state and the other
the for result, akin to the two parts of SObEq’s postcondition.

CodeHint [22] is, in some ways, the closest to our approach: it defines expressions as
equivalent if they have the same value and side effects in the current state, or, in our terminology,
an equivalence relation on both before- and after-states. How current states are used in
enumeration is not defined in the paper, but their implementation uses programs enumerated
on the initial state to populate their bank for new after-states, replicating the problem discussed
in Sec. 2.1. Moreover, CodeHint’s focus is its interactivity, and its interaction is designed
around a single example, with any additional information only filtering an initial list of programs,
not informing the OE enumeration. This is why we ruled it out as a baseline in Sec. 6.1.

SObEq sheds assumptions that expressions are pure and that intermediate states are known
in advance. Moreover, SObEq has the formal guarantee in Theorem 6, unlike the two most
general existing solutions: FrAngel, which randomly draws programs, and CodeHint, which
performs OE only on its first example and mutated states in an unprincipled manner.

Other side effects like file or database writes have been a challenge in program synthesis.
RbSyn [25] addresses database writes via a type-guided top-down enumeration from a syntax
including effect holes that can be filled with annotated mutating methods; expressions not
within effect holes have a purity assumption, limiting how effects are composed, unlike SObEq
that can use mutating operations anywhere. CodeHint allows users to enable effects on the file
system in their enumeration, even though they cannot be undone like memory mutations are.
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A Proofs of Theorems and Lemmas

A.1 Proof of Lemma 5
Interchangeability under ⊑Φ⃗ means that given f ∈ F with arity(f) = k, and k triples
trj = {P⃗j}pj{Q⃗j ; r⃗i},1 ≤ j ≤ k, with k frame axioms R⃗j s.t. Eval can be applied on f

and {P⃗j ∗R⃗j}pj{Q⃗j ∗R⃗j ;r⃗j} to infer {P⃗}f(p1,...,pk){Q⃗;r⃗}, and a triple tr′
i ={P⃗ ′

i }p′
i{Q⃗′

i;r⃗′
i} s.t.

tri ⊑Φ⃗ tr′
i for some 1≤ i≤k, then

1. There exists R⃗′
i s.t. Eval can still be applied on f when replacing {P⃗i∗R⃗i}pi{Q⃗i∗R⃗i;r⃗i}

with {P⃗ ′
i∗R⃗′

i}p′
i{Q⃗′

i∗R⃗′
i;r⃗′

i} to infer {P⃗ ′}f(p1,...,p′
i,...,pk){Q⃗′;r⃗′}, and

2. {P⃗}f(p1,...,pk){Q⃗;r⃗}⊑Φ⃗ {P⃗ ′}f(p1,...,p′
i,...,pk){Q⃗′;r⃗′}

Proof: interchangeability. Because tr1 ⊑Φ⃗ tr′
1, there exists R⃗′ s.t. {P⃗ ′

i ∗R⃗′}p′
i{Q⃗′

i∗R⃗′;r⃗′
i}≡Φ⃗

{P⃗i}pi{Q⃗i;r⃗i}. Therefore, let us select R⃗′
i =R⃗i∗R⃗′, which will keep the composed heap for the

sequence exactly as it was, making all midconditions equal again. Since r⃗i = r⃗′
i, Eval is still

applicable.
While sufficient to prove (1), we also notice that it is possible to select a better R⃗′

i if some
x∈dom(P⃗i) is removed from P⃗i and now exists only in the frame axioms. We denote R⃗′

j for all
trj new frame axioms without any such x. We now apply Eval to the sequence with the new
frame axioms and, since all ri remain the same, infer {P⃗ ′}f(p1,...,p′

i,...,pk){Q⃗′;r⃗} where there
exists R⃗ comprising the difference between R⃗i and R⃗′

i that proves {P⃗}f(p1,...,pk){Q⃗;r⃗} ⊑Φ⃗
{P⃗ ′}f(p1,...,p′

i,...,pk){Q⃗′;r⃗}. ◀

Consistency under ⊑Φ⃗ means that for goal G, if {P⃗1}p1{Q⃗1;r⃗1} ⊑ {P⃗2}p2{Q⃗2;r⃗2}, then
if there exists R⃗1 s.t. {P⃗1 ∗ R⃗1}p1{Q⃗1 ∗ R⃗1; r⃗1} matches G, then there exists R⃗2 s.t. {P⃗2 ∗
R⃗2}p2{Q⃗2∗R⃗2;r⃗2} matches G.

Proof: consistency. Since {P⃗1 ∗ R⃗1}p1{Q⃗1 ∗ R⃗1; r⃗1} matches G, we know that P⃗1 ∗ R⃗1 = I⃗,
q⃗ ⊆Q⃗1∗R⃗1, and ∀vi@li ∈ r⃗1.ωi =vi.

Because {P⃗1}p1{Q⃗1;r⃗1} ⊑ {P⃗2}p2{Q⃗2;r⃗2}, ∃R⃗.{P⃗1}p1{Q⃗1;r⃗1} ≡Φ⃗ {P⃗2 ∗ R⃗}p2{Q⃗2 ∗ R⃗;r⃗2},
so r⃗1 = r⃗2, P⃗1 = P⃗2∗R⃗, and Q⃗1 =Q⃗2∗R⃗.

From this, ∀vi@li ∈ r⃗2.ωi = vi, P⃗2 ∗R⃗∗R⃗1 = I⃗, and q⃗ ⊆ Q⃗2 ∗R⃗∗R⃗1. In other words, there
exists R⃗2 =R⃗∗R⃗1 s.t. {P⃗2∗R⃗2}p2{Q⃗2∗R⃗2;r⃗2} matches G. ◀

A.2 Proof of correctness of SObEq
In this section, we prove Theorem 6 by breaking it into two theorems: first, a correctness theorem
for the SObEq enumeration, then a correctness theorem for SObEq’s reduction of the space.

A.2.1 Correctness of the SObEqenumeration
Def. 2 defines a space LCM where LCM(0) starts with all possible values of each variable x, and,
inductively, will cover all possible concrete states. Our enumeration, however, starts from
⟨x 7→ ιi(x)⟩i, i.e., only from the variable values in the inputs, and only enumerates programs
using other preconditions as it discovers them. Many σ⃗ ∈A×···×A will simply not be reached
by the enumeration.

We therefore define the reachable program space (first without, and later with the OE-
reduction), and claim that it will not lose a solution that exists in the full program space.
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▶ Definition 7 (Reachable Program Space). We define a reachable program space from some
initial states I⃗ to be LCMreach =

⋃
i≥0LCMreach

(i) , where

LCMreach
(0) ={{ ⃗emp}l{ ⃗emp;

−−→
v@⊥}|l∈ lits,v ∈K is the value of l}∪{

{σ⃗}x{σ⃗;r⃗}|x∈V,σ⃗ =⟨x 7→ ιi(x)⟩i,r⃗=⟨ιi(x)@x⟩i

}
LCMreach

(n) =LCMreach
(n−1)∪

{
{P⃗}f(p1,...,pk){Q⃗;r⃗}|f ∈F ,arity(f)=k,{σ⃗i}pi{σ⃗′

i;∈}LCM(n−1),

∃R⃗1,...,R⃗k.Eval of f on {σ⃗i∗R⃗i}pi{σ⃗′
i∗R⃗i;ri} is {P⃗}f(p1,...,pk){Q⃗;r⃗}

}
∪

{
{a⃗x}x{a⃗x;r⃗}|x∈V ,⃗ax =⟨x 7→σi(x)⟩i,r⃗=⟨σi(x)@x⟩i,

{σ⃗}p{σ⃗′;r⃗′}∈LCMreach
(n−1)∨{σ⃗′}p{σ⃗;r⃗′}∈LCMreach

(n−1)
}

▶ Theorem 8. If a valid solution {σ⃗}p{σ⃗′;r⃗} exists in LCM, then {σ⃗}p{σ⃗′;r⃗}∈LCMreach.

We prove Theorem 8 by showing that all programs that can be reached in an evaluation
sequence from the initial state inLCM also exist in LCMreach.

We denote a program that can be part of a valid execution sequence starting at the start
states I⃗ as reachable. In our program representation, this means I⃗ satisfies the preconditions of
the sequence. Programs that are not reachable are irrelevant for us, as they cannot participate
in any solution. We define a helper predicate for a program {σ⃗}p{σ⃗′;r⃗} being reachable at
iteration n as follows:

reach({σ⃗}p{σ⃗′;r⃗},n)≜∃R⃗.σ⃗∗R= I⃗∨
∃{σ⃗0}p0{σ⃗′

0;r⃗0},...,{σ⃗i}pi{σ⃗′
i;r⃗i}∈LCM(n−1).

∃R⃗0,...,R⃗i+1.∀0<j ≤ i.(σ⃗′
j−1∗ ⃗Rj−1)=(σ⃗j ∗R⃗j)∧

σ⃗′
i∗R⃗i = σ⃗∗R⃗i+1∧

∃R⃗′.σ⃗0∗R⃗0∗R⃗′ = I⃗

Proof. We show by induction over n that all programs in LCM(n) whose precondition holds for
I⃗, or have some precondition σ⃗ and can form a valid execution trace starting a precondition
that holds for I⃗, will also be in LCMreach

(n′) for some n′. I.e.,

∀{σ⃗}p{σ⃗′;r⃗}∈LCM(n).reach({σ⃗}p{σ⃗′;r⃗},n) =⇒ ∃n′.{σ⃗}p{σ⃗′;r⃗}∈LCMreach
(n′)

This implies that for any solution {σ⃗}p{σ⃗′;r⃗}∈LCM(n), ∃n′.{σ⃗}p{σ⃗′;r⃗}∈LCMreach
(n′) as well, which

is what Theorem 8 states.
For n=0: For all {σ⃗}p{σ⃗′;r⃗}∈LCM(0), p=c∈C. Since there is no LCM(−1), the second disjunct

of reach is irrelevant. That leaves ∃R⃗.σ⃗ ∗ R = I⃗, where by definition {σ⃗}c{σ⃗′; r⃗} ∈ LCMreach
(0) :

σ⃗ = σ⃗′ is either ⃗emp or the initial values of variable c.
For n≥1: We begin by assuming the IH:

∀{σ⃗}p{σ⃗′;r⃗}∈LCM(n−1).reach({σ⃗}p{σ⃗′;r⃗},n−1) =⇒ ∃n′.{σ⃗}p{σ⃗′;r⃗}∈LCMreach
(n′)

Then for all {σ⃗}p{σ⃗′;r⃗}∈LCM(n) where reach({σ⃗}p{σ⃗′;r⃗},n), there are two cases:

1. If p=c (i.e., arity(c)=0):
i. if σ⃗ = ⃗emp or σ⃗ =⟨x 7→ ιi(x)⟩i, then {σ⃗}p{σ⃗′;r⃗}∈LCMreach

(0) .
ii. for other σ⃗, but reach({σ⃗}p{σ⃗′;r⃗},n), then from reach there exist a sequence of triples

{σ⃗j}pj{σ⃗′
j ; r⃗j} ∈ LCM(n−1) and matching frame axioms R⃗j s.t. σ⃗i ∗ R⃗i = σ⃗ ∗ Ri+1,

∃R⃗′.σ⃗0∗R⃗0∗R⃗′ = I⃗, and σ⃗′ = σ⃗ since c has no effect.
By the IH, there exists an n′ where all {σ⃗j}pj{σ⃗′

j ;r⃗j}∈LCMreachn′.
Since c is not at its original values, it is modified by some some {σ⃗j}pj{σ⃗′

j ;r⃗j}∈LCMreach
(n′) ,

so by Def. 7, {⟨c 7→σ′
j(c)⟩i}c{⟨c 7→σ′

j(c)⟩i;r⃗′} was added to LCMreach
(n′+1).
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In all cases, ∃n′.{σ⃗}p{σ⃗′;r⃗}∈LCMreach
(n′) .

2. If p is of the form f(p1,...,pk) (i.e. f ∈ F ,arity(f) = k), then its children {σ⃗j}pj{σ⃗′
j ;r⃗j} ∈

LCM(n−1),1≤j ≤k and ∃.R⃗1,...,R⃗k s.t. Eval can be applied to them. σ⃗ = σ⃗1∗R⃗1.
Since we know there is a frame axiom R⃗i+1 s.t. σ⃗ ∗ R⃗i+1 = σ⃗i ∗Ri, this means that the
same one can be used for the sequence of arguments to f . This implies that for each
{σ⃗j}pj{σ⃗′

j ;r⃗j}, reach({σ⃗j}pj{σ⃗′
j ;r⃗j},n−1).

And so, by the induction hypothesis, ∃nj .{σ⃗j}pj{σ⃗′
j ; r⃗j} ∈ LCMreach

(nj) , and if we let n′′ =
max(nj), by the definition of LCMreach

(n) , ∀1 ≤ j ≤ k.{σ⃗j}pj{σ⃗′
j ;r⃗j} ∈ LCMreach

(n′′) . Since all the
child sub-expressions of p exist in LCMreach

(n′′) , p will be enumerated in LCMreach
(n′′+1), and so if we

let n′ =n′′+1, {σ⃗}p{σ⃗′;r⃗}∈LCMreach
(n′) .

◀

A.2.2 Correctness of the SObEq reduction
Next, we show the SObEq enumeration (Algorithm 1) is correct: its reduction will not lose
any solutions.

▶ Definition 9 (SObEq-Reduced Program Space). Given the specifications Φ⃗ and the equivalence
relation ≡Φ⃗ (Def. 3) and order relation ⊑Φ⃗ (Def. 4) they induce, we define the reduction

reduce(Φ⃗,S−1,S)=
{

s(ec)={σ⃗}p{σ⃗′;r⃗}|ec∈S/≡Φ⃗,

∀{P⃗}p′{Q⃗;r⃗′}∈S∪S−1.{σ⃗}p{σ⃗′;r⃗} ̸⊑Φ⃗ {P⃗}p′{Q⃗;r⃗′}
}

where s(ec) selects a representative of equivalence class ec, and /≡Φ⃗ partitions the space into
equivalence classes based on ≡Φ⃗. We then define the space after the SObEq reduction to be⋃

i≥0LCMS
(i) where LCMS

(i) is also defined inductively:

LCMS
(0) =reduce(Φ⃗,∅,LCMreach

(0) )
LCMS

(n) =LCMS
(n−1)∪reduce

(
Φ⃗,LCMS

(n−1),
{

{P⃗}f(p1,...,pk){Q⃗;r⃗}|f ∈F ,arity(f)=k,{σ⃗i}pi{σ⃗′
i;r⃗i}∈LCMS

(n−1),

∃R⃗1,...,R⃗k.Eval of f on {σ⃗i∗R⃗i}pi{σ⃗′
i∗R⃗i;ri} is {P⃗}f(p1,...,pk){Q⃗;r⃗}

}
∪

{
{a⃗x}x{a⃗x;r⃗}|x∈V ,⃗az =⟨z 7→σi(x)⟩i,r⃗=⟨σi(x)@x⟩i,

{σ⃗}p{σ⃗′;r⃗′}∈LCMS
(n−1)∨{σ⃗′}p{σ⃗;r⃗′}∈LCMS

(n−1)
})

Then to show that the SObEq enumeration using ≡Φ⃗ and ⊑Φ⃗ is correct, we re-introduce the
correctness theorem from [45, Theorem 7.2] for an OE-reduced enumeration in our terms:

▶ Theorem 10 (Correctness of the reduced enumeration). Given {σ⃗1}p1{σ⃗′
1; r⃗1} ∈ LCMreach

and a goal GΦ⃗, if there exists R⃗1 s.t. {σ⃗1 ∗ R⃗1}p1{σ⃗′
1 ∗ R⃗1;r⃗1} matches GΦ⃗, then there exists

{σ⃗2}p2{σ⃗′
2;r⃗2}∈LCMS and a R⃗2 s.t. {σ⃗2∗R⃗2}p2{σ⃗′

2∗R⃗2;r⃗2} also matches GΦ⃗.

First, we show programs are not lost, and equivalent programs in the space still exist:

▶Lemma11. If there exists a triple {σ⃗1}p1{σ⃗′
1;r⃗1}∈LCMreach

(n) then there is a triple {σ⃗2}p2{σ⃗′
2;r⃗2}∈

LCMS
(n) s.t. {σ⃗1}p1{σ⃗′

1;r⃗1}⊑Φ⃗ {σ⃗2}p2{σ⃗′
2;r⃗2}

In other words, the reduced space has an interchangeable and consistent program under ⊑Φ⃗.

Proof. n=0: this is true by the definition of LCMS
(0).

n>0: We assume ∀{σ⃗1}p1{σ⃗′
1;r⃗1}∈LCMreach

(n−1).∃{σ⃗2}p2{σ⃗′
2;r⃗2}∈LCMS

(n−1).{σ⃗1}p1{σ⃗′
1;r⃗1}⊑Φ⃗

{σ⃗2}p2{σ⃗′
2;r⃗2}.

For each {σ⃗}p{σ⃗′;r⃗} in LCMreach
(n) :
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1. If p=c (i.e., arity(c)=0):
i. if ∃R⃗.σ⃗∗R⃗= I⃗, then by our base case {σ⃗2}p2{σ⃗′

2;r⃗2}∈LCMS
(0).

ii. if ¬∃R⃗.σ⃗∗R⃗= I⃗, then by definition of LCMreach
(n) , ∃tr1,...trk ∈LCMreach

(n−1).tri ={σ⃗i}pi{σ⃗′
i;r⃗i}

and ∃R⃗1,...,R⃗k+1 and σ⃗ =⟨(c 7→ σ⃗k ∗Rk)i(c)⟩i. By the induction hypothesis, there exist
tr′

1,...,tr′
k ∈LCMS

(n−1) s.t. tri ⊑Φ⃗ tr′
i. Since the value of c changed since the initial state, it

was changed by (i.e., cannot be in the frame of) some tri, so it was also changed by tr′
i.

So by definition of LCMS
(n), the triple {σ⃗}c{σ⃗;r⃗} will be enumerated in LCMS

(n) at the latest.

2. If p=f(p1,...,pk): there exist tr1,...,trk ∈LCMreach
(n−1),tri ={σ⃗i}pi{σ⃗′

i;r⃗i} s.t. ∃R⃗1,...,R⃗k to en-
able Eval, and σ⃗1∗R⃗1 = σ⃗. So by the IH there exist tr′

1,...,tr′
k ∈LCMS

(n−1),tr
′
i ={σ⃗′′

i }p′
i{σ⃗′′′

i ;r⃗′}
s.t. ri =r′

i, and for each tr′
i there exists R⃗′

i that is the frame axiom for tri ⊑Φ⃗ tr′
i: σ⃗′′

i ∗R⃗′
i = σ⃗i

and σ⃗′′′
i ∗R⃗′

i = σ⃗′
i. Therefore, we can use R⃗1 ∗R⃗′1,...,R⃗k ∗R⃗′

k to apply Eval on tr′
1,...,tr′

k.
Since ri = r′

i, the result will still be r⃗, and will have the same effect, i.e., starting at
P⃗ ′ = σ⃗1 ∗R⃗1 ∗R⃗′′1 where R⃗′′1 is the minimal necessary frame axiom for eval (R⃗′′1 ⊆ R⃗′1)
Eval will yield postcondition assertion Q⃗⊆ σ⃗′.
By Lemma 5, {σ⃗}p{σ⃗′;r⃗} ⊑Φ⃗ {P⃗}f(p′

1,...,p′
k){Q⃗;r⃗}, and since all its components are in

LCMS
(n−1) it will be enumerated by LCMS

(n).
◀

We are now ready to prove our theorem:

Proof of Theorem 10. Given a triple {σ⃗}p{σ⃗′; r⃗} ∈ LCMreach s.t. there exists R⃗ where {σ⃗ ∗
R⃗}p{σ⃗′∗R⃗;r⃗} matches GΦ⃗, we know from Lemma 11 that there is a {σ⃗′′}p′{σ⃗′′′;r⃗′}∈LCMS s.t.
{σ⃗}p{σ⃗′;r⃗}⊑{σ⃗′′}p′{σ⃗′′′;r⃗′}. From Lemma 5 for consistency, we get that if {σ⃗∗R⃗}p{σ⃗′∗R⃗;r⃗}
matches GΦ⃗, then there exists R⃗′ s.t. {σ⃗′′ ∗R⃗′}p′{σ⃗′′′ ∗R⃗′;r⃗′} matches GΦ⃗, or in other words,
there exists a solution in LCMS . ◀
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B Benchmark information

Table 1 |Φ⃗|: number of specifications provided for the benchmark; |V|: total number of variables;
|q|: number of variables with a sepcified effect. # vars by type

name |Φ⃗| |V| int string list set return type # immut |q|

M
us

t

ArraySwap.sy 2 2 1 0 1 0 1 1
set-adddelete.sy 3 3 0 2 0 1 0 1
fill_fibonacci_loopy_window.sy 3 1 0 0 1 0 0 1
get_range_loopy_for.sy 5 4 3 0 1 0 3 1
rotate_queue.sy 4 2 1 0 1 0 1 1
leetcode-setdelete.sy 3 3 1 0 1 1 Bool 0 1
buffer-add.sy 1 4 3 0 1 0 Int 0 2
MaxAndMinWithN.sy 2 2 1 0 1 0 Int 0 1
MoveFromAToB.sy 2 2 0 0 2 0 Int 0 2
get_range_loopy_while.sy 5 4 3 0 1 0 Int 2 2
MaxAndMin-keepAllElems.sy 2 1 0 0 1 0 Int 0 1
RemoveMax.sy 3 1 0 0 1 0 Int 0 1
partition-k-largest.sy 2 2 1 0 1 0 [Int] 0 1
sum-two-arrays-destructive.sy 2 3 0 0 3 0 [Int] 1 2
ArrayCounter-mustmut.sy 2 2 1 0 1 0 [Int] 0 1
leetcode-arraypermutations-mustmut.sy 4 3 1 0 2 0 [Int] 1 1
SortArrayGivenSwap-mustmut.sy 3 1 0 0 1 0 [Int] 0 1
leetcode-adddominos.sy 2 2 0 1 0 1 {String} 0

M
ay

IsAllPositive.sy 3 1 0 0 1 0 Bool 0
IsIncreasing.sy 3 1 0 0 1 0 Bool 0
MaxAndMin.sy 2 1 0 0 1 0 Int 0
MaxDouble.sy 3 1 0 0 1 0 Int 0
count-total-words-in-a-cell.sy 3 1 0 1 0 0 Int 0
NegativeIndex.sy 2 2 0 2 0 0 Int 0
DigitsToString.sy 1 1 0 0 1 0 String 0
DelimitedStringConcat.sy 4 3 0 2 1 0 String 0
UppercaseFirstChar.sy 3 1 0 1 0 0 String 0
17212077.sy 3 1 0 1 0 0 String 0
38871714.sy 2 1 0 1 0 0 String 0
43606446.sy 3 1 0 1 0 0 String 0
clean-and-reformat-telephone-numbers.sy 3 1 0 1 0 0 String 0
exceljet1.sy 3 2 0 2 0 0 String 0
exceljet2.sy 3 1 0 1 0 0 String 0
exceljet3.sy 3 1 0 1 0 0 String 0
exceljet4.sy 3 1 0 1 0 0 String 0
extract-nth-word-from-text-string.sy 3 2 1 1 0 0 String 0
extract-text-between-parentheses.sy 3 1 0 1 0 0 String 0
extract-word-containing-specific-text.sy 2 1 0 1 0 0 String 0
extract-word-that-begins-with-specific-character.sy 3 1 0 1 0 0 String 0
get-first-name-from-name-with-comma.sy 3 2 1 1 0 0 String 0
get-last-word.sy 3 1 0 1 0 0 String 0
get-middle-name-from-full-name.sy 3 1 0 1 0 0 String 0
initials_small.sy 3 1 0 1 0 0 String 0
phone-10-long.sy 3 1 0 1 0 0 String 0
phone-5-long.sy 3 1 0 1 0 0 String 0
phone-6-long-repeat.sy 3 1 0 1 0 0 String 0
remove-text-by-position.sy 3 1 0 1 0 0 String 0
split-text-string-at-specific-character.sy 3 2 1 1 0 0 String 0
stackoverflow1.sy 3 1 0 1 0 0 String 0
stackoverflow2.sy 2 1 0 1 0 0 String 0
stackoverflow4.sy 3 1 0 1 0 0 String 0
stackoverflow6.sy 2 1 0 1 0 0 String 0
stackoverflow7.sy 2 2 0 2 0 0 String 0
strip-html-from-text-or-numbers.sy 3 1 0 1 0 0 String 0
FirstAndLast.sy 3 1 0 0 1 0 String 0
leetcode-arraypermutations-mut.sy 4 3 1 0 2 0 [Int] 1
leetcode-arraysum.sy 4 3 1 0 2 0 [Int] 0
ArrayCounter.sy 2 2 1 0 1 0 [Int] 0
SortArrayGivenSwap.sy 3 1 0 0 1 0 [Int] 0
RotateQueueOnce.sy 2 1 0 0 1 0 [Int] 0
leetcode-arraypermutation.sy 4 3 1 0 2 0 [Int] 0
RotateQueue.sy 3 2 1 0 1 0 [String] 0
AddArrayToListOrNull.sy 3 2 0 0 2 0 [String] 0
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