
Synthesis of Web Layouts from Examples
Dylan Lukes∗

dlukes@eng.ucsd.edu
UC San Diego

La Jolla, CA, USA

John Sarracino∗†
jsarracino@cornell.edu
Cornell University
Ithaca, NY, USA

Cora Coleman
ccoleman@eng.ucsd.edu

UC San Diego
La Jolla, CA, USA

Hila Peleg†
hilap@cs.technion.ac.il

Technion
Haifa, Israel

Sorin Lerner
lerner@eng.ucsd.edu

UC San Diego
La Jolla, CA, USA

Nadia Polikarpova
npolikarpova@eng.ucsd.edu

UC San Diego
La Jolla, CA, USA

ABSTRACT

We present a new technique for synthesizing dynamic, constraint-
based visual layouts from examples. Our technique tackles two ma-
jor challenges of layout synthesis. First, realistic layouts, especially
on the web, often contain hundreds of elements, so the synthesizer
needs to scale to layouts of this complexity. Second, in common
usage scenarios, examples contain noise, so the synthesizer needs
to be tolerant to imprecise inputs. To address these challenges we
propose a two-phase approach to synthesis, where a local inference
phase rapidly generates a set of likely candidate constraints that
satisfy the given examples, and then a global inference phase selects
a subset of the candidates that generalizes to unseen inputs. This
separation of concerns helps our technique tackle the two chal-
lenges: the local phase employs Bayesian inference to handle noisy
inputs, while the global phase leverages the hierarchical nature of
complex layouts to decompose the global inference problem into
inference of independent sub-layouts.

We implemented this technique in a tool called Mockdown and
evaluated it on nine real-world web layouts, as well as a series
of widespread layout components and an existing dataset of 644
Android applications. Our experiments show thatMockdown is
able to synthesize a highly accurate layout for the majority of
benchmarks from just three examples (two for Android layouts),
and that it scales to layouts with over 600 elements, about 30x more
than has been reported in prior work on layout synthesis.
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• Software and its engineering→ Source code generation;Au-
tomatic programming; Programming by example.
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1 INTRODUCTION

Visual layout is the problem of arranging graphical user interface
(GUI) elements on screen. Creating layouts is an integral part of
developing desktop, mobile, and web-based applications. In all these
domains, the layoutsmust be dynamic; that is, the absolute positions
of the GUI elements, also called views, must adjust to the dimensions
of the root view, in order to keep the application functional and
aesthetically pleasing for a wide range of dimensions [40].
Constraint-Based Layout. For webpages, dynamic layouts are
usually defined using Cascading Style Sheets (CSS) [39]. However,
the expressivity of CSS is limited, for example in allowing sibling
elements to be defined relative to each other. In mobile applications,
this niche has been filled by declarative constraint systems such as
Apple’s AutoLayout [50] and Android’s ConstraintLayout [27],
powerful tools for implementing dynamic layouts. The key idea of
declarative constraint systems is to express local relations between
views, such as “adjacent-to” or “center-aligned”, as constraints, and
let the layout engine solve these constraints at run time to figure
out where to place each GUI element given particular root view
dimensions. For example, Fig. 1a shows a screenshot of a slightly
simplified version of the IEEE Xplore website [1], which includes
a “Featured Authors” panel displaying profiles of three authors.
The desired horizontal layout for this panel can be expressed with
constraints stating that the middle profile is centered in the page
and the margins on either side of each profile are fixed. At run
time, as the user resizes the page, the layout responds according
to the constraints (see Fig. 1b): the width of the profiles changes,
preserving centering and margins.

While constraint-based layouts have been greatly successful in
the mobile domain, they are not as prevalent for web design. A
potential reason is that a webpage has many more moving parts
than a mobile application, and the relations between elements are
far more complex, making constraints harder to author.
Layout Synthesis. A promising approach to easing the creation of
flexible constraint-based layouts is to synthesize them automatically
from examples. For instance, a layout synthesizer might take as
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(a) Layout example 1: 1200x870

(b) Layout example 2: 1600x870

Figure 1: Snapshots of the IEEE Xplore website layout at dif-

ferent page dimensions.

input the two static “snapshots” in Fig. 1, and infer a system of
constraints that (1) matches the examples: places all view just like
in the input snapshots given their corresponding dimensions, and
(2) generalizes beyond the examples: produces some “reasonable”
placement for other dimensions. Layout synthesis enables various
new ways of authoring dynamic layouts: for example, a designer
may create several mock-ups in a direct-manipulation editor and
then automatically convert them into a general constraint-based
layout; alternatively, a user can emulate the look of an existing
website, by scraping layout snapshots directly from the browser’s
rendering of the HTML.

Challenges. In the mobile domain, the state of the art in layout
synthesis is InferUI [11, 36], a tool for generating AutoLayout
constraints for Android applications. At a high level, InferUIworks
by encoding the problem as an SMT query following the general
approach of symbolic program synthesis [33, 54]. Extending layout
synthesis beyond mobile apps, most notably to the web domain,
poses two major challenges: (1) Scalability: web layouts typically
have at least an order of magnitude more views than Android
layouts do; the pure SMT-based approach scales poorly with the
number of views in the layout. (2) Noise: in a realistic setting, both
scraped and user-designed examplesmight contain noise: that is, the

input snapshots satisfy the desired constraints only approximately;
the pure SMT-based approach cannot handle such noisy inputs.
Our Solution. In this work we develop Mockdown, a new lay-
out synthesizer that accepts layout examples (e.g., from a direct
manipulation editor or a scraping tool) and finds the constraints
needed. These can then be passed on to a web constraint-based
layout engine (i.e., the web equivalent of AutoLayout equivalent)
or be solved in JavaScript code to set the sizes and positions of
views upon resize. Mockdown tackles the two challenges outlined
above and is able to synthesize complex layouts from realistic noisy
inputs. In contrast to the the monolithic SMT encoding of prior
work, the synthesis process in Mockdown is split into two phases:
local inference, which considers each constraint in the search space
in isolation, and global inference, which considers systems of con-
straints as a whole. The goal of local inference is to suggest a set of
candidate constraints, which match the provided examples, but do
not necessarily generalize to unseen dimensions; the goal of global
inference is to pick a subset of the candidates that generalizes. For
example, given just the one example in Fig. 1a, Mockdown’s local
inference phase would suggest that all author profiles have a fixed
width of 340 pixels and that their outer and inner margins are fixed
(at 60 and 30 pixels, respectively). While these constraints are true
for this example, they cannot all continue to hold if we resize the
page. Mockdown’s global inference uses a MaxSMT [12] solver to
pick a maximal subset of these constraints that is satisfiable for a
wide range of page dimensions; in this case, the global inference
must get rid of either the fixed width constraints or one of the
margin constraints.
Handling Noise via Bayesian Local Inference. Mockdown’s
two-phase architecture helps it address the two major challenges
outlined above. To deal with noise, the local phase employs Bayesian
inference to generate constraint candidates that, on the one hand,
are likely to generate the data, and on the other hand, are simple ac-
cording to a domain-specific prior. Crucially, the SMT-based global
phase never gets exposed to noisy data.
Scaling via Hierarchical Global Inference.WithMockdown’s
two-phase approach, the local phase rapidly falsifies unlikely con-
straints, thereby pruning the search space for the computationally
intensive global phase. Our experiments show, however, that this
pruning is not sufficient to make the global phase scale to complex
web layouts. To further improve performance, we leverage the ob-
servation that real-world layouts are hierarchical: the views are
arranged in a tree, and the layout of the upper layers of the hierar-
chy is independent from the lower layers. For example, for the IEEE
website, we first infer the layout of the three author profiles and
then independently infer the layout of their contents (image, name,
“Follow...” button). This hierarchical global inference significantly
improves scalability for real-world layouts, where the number of
“sibling” views is typically small.
Contributions. In summary, this paper makes the following con-
tributions:
• A two-phase layout synthesis algorithm, where a local phase
rapidly generates the set of likely candidate constraints that
satisfy the examples, and a global phase selects a generaliz-
able subset of these constraints (Sec. 2).
• Noise-tolerant local inference via Bayesian learning (Sec. 3).
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• Hierarchical global inference, which leverages the structure
of real-world layouts to achieve scalability (Sec. 4).
• An implementation of the two-phase synthesis algorithm
in a tool called Mockdown, which has been evaluated on
real-world Android and web layouts (Sec. 5). Mockdown
can discover the constraints of realistic layouts with as much
as an order of magnitude more elements as previous tools.

2 MOTIVATING EXAMPLE

Consider the task of designing a dynamic layout for the IEEE Xplore
website introduced in Fig. 1. In this section we explain how Mock-
down can infer a constraint-based layout for this website using two
examples (with the focus on laying out the author profiles within
the “Featured Authors” pane). The inference process is depicted in
Fig. 2, to which we refer throughout the section.

2.1 The Mockdown Interface

Mockdown takes as input a set of examples, i.e. static snapshots
of the layout at fixed page dimensions. Concretely, every input
example is a JSON file that encodes the hierarchy of views and their
absolute positions within the page. For example, Fig. 2A shows an
excerpt from the Mockdown inputs for the two snapshots from
Fig. 1, focused on the “Featured Authors” pane. Across different
examples, the set of views and their hierarchy is assumed to be the
same (here, the author profile views turing and hopper are children
of the authors pane), while their positions, specified via the rect

attribute, differ.
Given these two examples,Mockdown infers a set of constraints

shown in Fig. 2F. These constraints represent linear relationships
between anchors of the views, where an anchor is either an edge, like
hopper.left, or a dimension derived from the edges, like hopper.width
or hopper.center_x. Constraints of this form serve as input to a con-
straint layout engine, which, given a new desired page size (for
example 1300 × 870), will generate a concrete placement of all the
views that satisfies the constraints, as shown in Fig. 2G and Fig. 2H.

Inputs to Mockdown might come from a variety of front-ends.
Perhaps most obviously, a designer might use a direct-manipulation
tool to manually place the views and specify their hierarchy. Al-
ternatively, if a user would like to replicate the look of an existing
website, they can scrape this information from this website’s HTML
rendered in the browser; in fact, for evaluation purposes we have
implemented such a scraping front-end forMockdown. With ei-
ther front-end, we can envision an interactive design process where
the user starts with a single example and then iteratively adds more
examples if upon visual inspection at a new page dimension they
are dissatisfied with the generated dynamic layout.

Likewise, the outputs of Mockdown might be consumed by a
variety of layout engines, including the popular engines AutoLay-
out [50] and ConstraintLayout [27] for the mobile domain, and
Grid Style Sheets [58] for the web domain. Because the support for
constraint-based layout in web browsers is not (yet) widespread, for
evaluation purposes we have implemented a simple layout engine
that can be embedded into the webpage as JavaScript, and is based
on the Kiwi [49] constraint solver1.

1https://github.com/MangoTeam/mockdown-client

In the remainder of this paper we focus on the synthesis back-
end—i.e. going from the JSON examples to constraints—which is
common for all front-ends and constrained layout engines. In the
rest of this section, we detail the two phases of the constraint
inference process: local and global inference.

2.2 Local Inference

The goal of local inference is to generate a set of candidate con-
straints matching the provided examples. An excerpt from the out-
put of local inference is shown in Fig. 2D. This task can be solved
efficiently following the invariant inference approach pioneered by
Daikon [22]. This approach first instantiates constraint templates
using variables in scope to produce constraint sketches, and then fills
in the parameters of each sketch (or falsifies it altogether) based on
the variable values observed in the examples.Mockdown’s local
inference is inspired by this approach, but it uses novel domain-
specific techniques both for template instantiation and for param-
eter inference, which enable Mockdown to prune the space of
candidate constraints and handle noise.
Visibility-Guided Template Instantiation. Although our algo-
rithm is able to infer a variety of constraints—including offsets,
alignments, size-ratios, and constant sizes—all of these constraints
are in fact instances of single template y = 𝑎 · x + 𝑏, where x, y are
anchors and 𝑎, 𝑏 are rational constants. Mockdown instantiates
this template with concrete anchors from the input examples to
generate a set of constraint sketches, i.e. constraints where one or
both of 𝑎 and 𝑏 are left as parameters, as shown in Fig. 2C. Similarly
to type-based template instantiation in Daikon,Mockdown only
generates well-formed sketches, following domain-specific rules
that reflect constraint forms used in real-world layouts. For exam-
ple, we generate an “offset” sketch hopper.left = turing.right + 𝑏,
but we do not generate sketches hopper.left = 𝑎 · turing.right or
hopper.left = turing.width+𝑏, because edge ratios and edge-width
relations are considered ill-formed.

Even after eliminating ill-formed sketches, the number of sketches
generated for realistic inputs can be very large. To further prune the
space of sketches we observe that real-world layouts place views
with respect to their immediate parents and neighbors. For exam-
ple, in Fig. 2 we do not want to relate turing.right to bovik.left

because these two views are not immediate neighbors. To formalize
this intuition, Mockdown builds a visibility graph at each level of
the view hierarchy, and uses it to generate constraints only between
visible edges of parent-child or sibling-sibling view pairs (two edges
are considered visible if it is possible to draw a straight uninter-
rupted line between them). The visibility graph for our example is
shown in Fig. 2B. Visibility-based pruning reduces the number of
sketches generated for the IEEE example from 8820 to 576.
BayesianParameter Inference. For each generated sketch,Mock-
down next learns its parameters 𝑎, 𝑏, such that the resulting con-
straint is satisfied for each input example. The major challenge
for parameter inference is noise in the input data. For example, as
shown in Fig. 2A, the anchor turing.left has values 59.5px and
60.15px in the two examples. The intended margin for this view
is actually 60px; however, most use cases for layout synthesis in-
evitably introduce some amount of noise in the examples, either
due to user input or due to numerical error during rendering and

https://github.com/MangoTeam/mockdown-client
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Figure 2: An overview of the constraint inference process inMockdown.

scraping (recall that all numbers in JavaScript are represented as
floats). A traditional, Daikon-like approach would instantiate the
sketch turing.left = authors.left + 𝑏 with 𝑏 = 59.5 given the first
example, and then would falsify this sketch given both examples,
erroneously rejecting this desirable offset constraint.

Instead,Mockdown’s Bayesian parameter inference algorithm
turns each sketch into a set of candidate constraints that match the
data approximately. To this end, Mockdown performs constrained
linear regression, and then suggests candidate parameters, drawn
from a domain-specific prior distribution, that fall within a confi-
dence interval about the linear fit. In our example, even though the
value 𝑏 = 59.5 fits the data perfectly in the one-example case, our
prior on offsets constrains them to be integers, and hence param-
eter inference produces two candidate values, 𝑏 = 59 and 𝑏 = 60
(see Fig. 2D). Mockdown also produces a confidence score for each

candidate based on a Bayesian likelihood model; in this case both
candidates have the score of 0.5, since our offset prior has no pref-
erence among different integers and both offsets fit the data equally
well. After adding the second example, however, the value 𝑏 = 60
receives a higher score, because now it fits the data much better.

2.3 Global Inference

Layout synthesis must produce constraints that generalize to un-
seen page sizes (within a certain range). In our example, the user
expects the constraints produced byMockdown to have a solution—
i.e. to generate a placement for all views on the page—when the
page width ranges between 1280px and 1680px. Candidate con-
straints produced by local inference (Fig. 2D) do not necessarily
satisfy this criterion for two reasons. First, a subset of constraints
might be (approximately) satisfied by all provided examples, but
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be unsatisfiable on unseen sizes. This happens most often when
constraints are inferred from one example: in Fig. 2D, given one
example, we infer both the fixed width constraints for profiles, such
as hopper.width = 340 and the fixed margin constraints between
them; these constraints together are unsatisfiable for any width
except 1200px. Second, due to noise, Mockdown sometimes infers
incompatible constraint candidates from the same sketch: for exam-
ple, the two offset constraints for turing.left with different values
of 𝑏 together are unsatisfiable.

The goal of global inference to select an optimal subset of the
candidate constraints that is satisfiable on a range of sizes of interest.
We consider a subset optimal if it maximizes the total confidence
score of the constraint set. Intuitively, we prefer larger constraint
sets to minimize the ambiguity in view placement, and among
incompatible constraints we prefer those with higher confidence
score, since they are more likely to have generated the data. To find
the optimal subset,Mockdown uses aMaxSMT solver [12], to select
the maximally satisfiable set of constraints on a random sample
of input dimensions from a user-specified range. Fig. 2E shows
that querying the MaxSMT solver with the candidates constraints
inferred from one example on five unseen sizes (including 1300x870)
leads to eliminating constraints II and V, which fix the outer margin.
This produces a layout that generalizes to a range of sizes, albeit
not in the way the user intended. With two examples, as shown in
Fig. 2F, the fixed width constraint I has been rejected by the local
phase, hence the only unsatisfiable subset of candidates is the two
fixed-margin constraints II and V; global inference picks constraint
V since it has a higher confidence score.

Hierarchical Decomposition. For layouts with many views, the
MaxSMT queries can be computationally intractable: global infer-
ence as described so far takes over 2 min for the simplified IEEE
layout and times out after 10 min on most real-world websites
in our experiments. To address this challenge, we once again take
advantage of layout-specific intuition: incompatible constraints typ-
ically appear within the same level of the view hierarchy. Based on
this intuition,Mockdown’s hierarchical global inference performs
constraint selection independently for each level of the hierarchy.
For example, in Fig. 2E all the conflicting constraints are between
authors and its immediate children (turing, hopper, and bovik), hence
there is no need to also consider the constraints between turing

and its children (photo, name, etc) in the same MaxSMT query. In
this example hierarchical inference reduces the solving time from
130 secs to 90 secs.

3 LOCAL INFERENCE

The local inference phase of Mockdown takes as input a view
hierarchy and a set of input examples, and produces a set of candi-
date constraints. As we explained informally in Sec. 2.2, this phase
consists of three steps: (1) detecting visibility between views; (2) gen-
erating a set of constraint sketches based on the view hierarchy and
visibility information; and (3) filling the sketches with concrete
numeric parameters based on input examples. Since the first two
steps are relatively straightforward, in this section we focus on the
third step, noise-tolerant parameter inference.

Parameter inference starts from a set of sketchesS = {𝑠1, . . . , 𝑠𝑁 }
and a set of examples E = {𝑒1, . . . , 𝑒𝑀 }. Here each sketch 𝑠 is of the

form y = 𝐴 ·x+𝐵, where x, y ∈ X are anchors and𝐴, 𝐵 ∈ P∪{0} are
unknown parameters to be instantiated (or 0 if the parameter does
not make sense for this pair of anchors); each example 𝑒 ∈ X → Q
maps anchors to a rational values. The output of parameter infer-
ence is a set of candidate constraints C = {𝑐1, . . . , 𝑐𝑘 }, where each 𝑐
is of the form y = 𝑎 · x+𝑏 (𝑎, 𝑏 ∈ Q), such that 𝑐 both (1) instantiates
a sketch y = 𝐴 · x + 𝐵 from S, and (2) approximately matches the
examples E, i.e.∀𝑒 ∈ E .𝑒 [y] ≈ 𝑎 ·𝑒 [x]+𝑏. We formalize the meaning
of this approximate match below using a Bayesian model.
Example.As a running example for the rest of this section, consider
a parameter inference problem with a single sketch child.width =

𝐴 · parent.width2 and two examples E = {𝑒1, 𝑒2}, mapping the
values of (parent.width, child.width) to (100, 33) and (200, 67),
respectively. Assume that the true intended value of 𝐴 is 1/3; you
can see that the examples are noisy on account of being rounded to
the nearest whole pixel.
Naive Parameter Inference. The simplest approach to parameter
inference is Daikon-style invariant detection [22]. That is, for each
sketch, initialize a candidate constraint from the first example,
and then iterate through the remaining examples, discarding the
candidate if a new example does not match. This simple approach,
however, fails in the presence of noise: in our running example, it
would instantiate 𝑎 = 0.33 using 𝑒1, and then reject this constraint
upon inspecting 𝑒2, because 0.33 · 200 = 66 ≠ 67 (this problem
arises even with precise rational arithmetic, and is exacerbated by
the more common floating-point arithmetic). To tackle this issue
we develop a noise-tolerant parameter inference algorithm.
Bayesian Model. In the presence of noise, we cannot require the
constraints C to match the data E exactly. Instead we need to find
parameter values that best explain the data. The simplest way to
formalize this intuition is as a linear regression problem, i.e. mini-
mizing the mean square error between the line y = 𝑎 · x + 𝑏 and the
examples in E. Although linear regression can be performed effi-
ciently using standard techniques, it rarely yields desirable results
in our domain, because it returns arbitrary real (in practice, floating
point) numbers for 𝑎 and 𝑏, whereas we want to bias the inference
towards simple rational parameters. Consider our running example:
with a slight perturbation of input values, linear regression might
return 𝑎 = 0.32323, which is very unlikely to be what the designer
intended, because the constant is too “complex”. Even if we round
this number to the closest rational with a denominator 𝐷 ≤ 100,
we would still get a “complex” result 𝑎 = 32/99 instead of a much
simpler, and therefore preferable, result 𝑎 = 1/3, which fits the
data only slightly worse. We can formalize this trade-off between
simplicity and fit using a Bayesian model.

In this formulation, our goal is to maximize the posterior proba-
bility 𝑃 (𝑐 | E) of a constraint given data, which by the Bayes’ law
is proportional to the prior probability 𝑃 (𝑐) of the constraint and
its fit to data 𝑃 (E | 𝑐):

𝑃 (𝑐 | E) ∝ 𝑃 (𝑐) · 𝑃 (E | 𝑐) (1)

This problem is known as Bayesian linear regression. Here fit to
data is easy to compute using the mean square error between the
constraint and the data: 𝑃 (E | 𝑐) ∝ exp(−mse(𝑐, E)); the challenge
2Note that 𝐵 = 0 is fixed in this sketch, becauseMockdown’s sketch generation phase
only considers ratio constraints between widths.
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is to define the prior 𝑃 (𝑐) such that it gives preference to simpler
parameters, e.g. prefers 1/3 over 32/99 in our running example.

Simplicity Prior.We formalize our intuitive notion of complexity
for a rational number 𝑞 as its Stern-Brocot depth, or sb_depth(𝑞). The
sb_depth of 𝑞 is its depth in the Stern-Brocot tree [13, 55], which can
be seen as a grammar for representing all rational numbers as se-
quences of left/right steps: e.g. 1/2 = 𝐿, 1/3 = 𝐿𝐿, 2/3 = 𝐿𝑅, and so
on. Hence, sb_depthmeasures the size of a “program representation”
of a rational and approximates its complexity, similarly to tradi-
tional size-based complexity metrics in program synthesis. In partic-
ular, in our example sb_depth(1/3) = 2 while sb_depth(32/99) = 16,
and hence the latter is considered much more complex.

Conveniently sb_depth(𝑞) is easy to compute: it is equal to the
sum of the continued fraction representation of 𝑞 [26]. We can
thereby avoid computing or traversing the Stern-Brocot tree, and
instead merely precompute the set of all rationals with denominator
less than some𝐷 (our implementation uses𝐷 = 100). This sequence
is known as a Farey sequence of order 𝐷 .

We define the overall prior 𝑃 (y = 𝑎 · x + 𝑏) = 𝑃𝑚 (𝑎) · 𝑃𝑎 (𝑏),
where the prior 𝑃𝑚 for multiplicative parameters is defined as
a minimum description length prior [48], using sb_depth as the
description length. The prior 𝑃𝑎 for additive parameters is simpler:
it is uniform over all integer values and zero on non-integer values.

Noise-Tolerant Parameter Inference. Given our complex prior,
the Bayesian linear regression problem (1) cannot be solved analyti-
cally. We propose an algorithm to solve this problem efficiently but
approximately, based on two domain-specific insights. First, there
is a unique model 𝑐∗ (with parameters (𝑎∗, 𝑏∗)) that maximizes the
data fit 𝑃 (E | 𝑐∗), which can be found efficiently using traditional
linear regression; since the posterior is proportional to the data
fit, we can search for its maximum in the vicinity of 𝑐∗. Second,
given our prior 𝑃 (𝑐), there are only finitely many parameters (𝑎, 𝑏)
with a non-zero probability in any bounded box (because 𝑎 must
be a rational with maximum denominator 𝐷 = 100 and 𝑏 must be
an integer). Based on these observations, our algorithm infers the
(approximately) optimal model 𝑐 by first computing 𝑐∗ based only
on the data fit, and then enumerating and scoring all pairs (𝑎, 𝑏)
with non-zero prior that are sufficiently close to (𝑎∗, 𝑏∗).

Our algorithm is depicted in Fig. 3. Line 2 performs least-squares
linear regression, which is constrained by the sketch (e.g. 𝐵 = 0
in our running example), but ignores the prior. Regression yields
three outputs: the model 𝑐∗ (i.e. a pair of parameters (𝑎∗, 𝑏∗)), the
mean square error mse between E and 𝑐∗, and a confidence interval
conf_int. The mse is used to determine whether or not to reject the
sketch (on lines 3-4): if it is large, indicating that our examples do not
appear to fit a line, we reject the sketch. In our example, mse = 0.3
and the sketch is accepted; however, with the addition of a third
data point that does not continue the line, e.g. parent.width = 300

and child.width = 67, mse would rise to 105 and the sketch would
therefore be rejected.

Lines 6–9 iterate over the relevant region of candidate param-
eters, score them according to the posterior, and store them in
scored_params. We compute the region to iterate over as the intersec-
tion of conf_int and param_space, which represents parameters with
non-zero prior; as we argued above, this intersection is always finite.
In our running example, we obtain a conf_int of [0.3215, 0.3385],

1: procedure InferParameters(𝑠 , E)
2: 𝑐∗, mse, conf_int← constrained_linreg(𝑠, E)
3: if mse > cutoff then

4: return []

5: scored_params← [ ]
6: for 𝑐 ∈ (conf_int ∩ param_space(𝑠)) do
7: score← 𝑃 (𝑐) · 𝑃 (E | 𝑐)
8: Add (𝑐, score) to scored_params.
9: return scored_params

Figure 3: Noise-Tolerant Parameter Inference algorithm.

which yields a set of candidate values for the parameter 𝑎, including:
32/99, 33/100, and the desired 1/3.

4 GLOBAL INFERENCE

The goal of Mockdown’s global phase is to pick a subset of can-
didate constraints that generalizes to unseen dimensions. More
formally, this phase takes as input a set of candidate constraints C
and a score map score ∈ C → (0, 1] (both produced by the local
inference), as well as a set dims = {(𝑤1, ℎ1), . . . , (𝑤𝐾 , ℎ𝐾 )} of gen-
eralization dimensions, where each dimension (𝑤 𝑗 , ℎ 𝑗 ) ∈ Q2 is a
pair of width and height of the root view. It computes a maximal
satisfiable subset of C, i.e. a set C′ ⊆ C such that:

(1) C′ is satisfiable on all dimensions dims, i.e. ∀(𝑤 𝑗 , ℎ 𝑗 ) ∈ dims

there exists a substitution 𝜎 𝑗 ∈ X → Q for all anchors in C′,
such that 𝜎 𝑗 [root.width] = 𝑤 𝑗 , 𝜎 𝑗 [root.height] = ℎ 𝑗 and
∀𝑐 ∈ C′.𝜎 𝑗 (𝑐) holds.

(2) any satisfiable subset C′′ has at most the same score as C′:∑{score[𝑐] | 𝑐 ∈ C′′} ≤ ∑{score[𝑐] | 𝑐 ∈ C′}.
4.1 Selecting Constraints with MaxSMT

To select the maximal satisfiable subset of C, Mockdown relies on
a MaxSMT solver [12]. For our purposes, a MaxSMT query consists
of quantifier-free formula 𝜙 , a set of boolean control variables 𝑏𝑖 ,
and a map weight from 𝑏𝑖 to numeric weights. A MaxSAT solver
returns UNSAT if 𝜙 is unsatisfiable, and otherwise returns a model
M of 𝜙 which maximizes

∑{weight(𝑏𝑖 ) | M[𝑏𝑖 ] = true}, i.e. the
total weight of control variables set to true3.

We encode the problem of finding C′ as a MaxSMT query. To
this end, we introduce the following variables:

(1) for each constraint 𝑐𝑖 ∈ C, we introduce a boolean con-
trol variable 𝑏𝑖 with weight[𝑏𝑖 ] = score[𝑐𝑖 ]; 𝑏𝑖 represents
whether 𝑐𝑖 should be included in C′;

(2) for each pair of anchor 𝑥 ∈ X and dimension (𝑤 𝑗 , ℎ 𝑗 ) ∈
dims, we introduce a rational variable 𝑥 𝑗 to represent the
placement of anchor 𝑥 under this dimension.

Next we construct the formula 𝜙 as a conjunction of the following
sub-formulas:

(1) for each dimension 𝑗 : root.width𝑗 = 𝑤 𝑗 ∧ root.height𝑗 = ℎ 𝑗 ;
(2) for each constraint 𝑖 and dimension 𝑗 : 𝑏𝑖 ⇒ 𝑐

𝑗
𝑖
, where 𝑐 𝑗

𝑖
is

the constraint 𝑐𝑖 with each anchor 𝑥 replaced by 𝑥 𝑗 ;

3Alternatively, a MaxSMT solver can also be used to optimize a given objective function
subject to a logical formula; we use this functionality in the next section.
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1: procedure SynthHier(C, dims, score)
2: worklist← [(root, dims) ]
3: C′ ←{}

4: while worklist ≠ [] do

5: (focus,dims𝑓 )← worklist.pop

6: C𝑓 ← restrict(focus, C)
7: C′

𝑓
← select(𝐶𝑓 , focus, dims𝑓 , score)

8: C′ ← C′ ∪ C′
𝑓

9: for child ∈ children(focus) do
10: dims𝑐 ← calc_dims(focus, dims𝑓 , child, C′)
11: worklist.push ( (child, dims𝑐 ))
12: return C′

Figure 4:Mockdown Global generalization algorithm

(3) finally, we add domain-specific facts about anchors, such as
𝑥 𝑗 >= 0 and 𝑥 .width 𝑗 = 𝑥 .right𝑗 − 𝑥 .left𝑗 .

Given this query, the solver attempts to find a placement for all
anchors under each dimension in dims that satisfies constraints in
C; if it cannot satisfy all the constraints, it is free to set some 𝑏𝑖
to false, rendering all formulas of the form 𝑏𝑖 ⇒ 𝑐

𝑗
𝑖
vacuous, and

effectively disabling the constraint 𝑐𝑖 . When the solver returns a
modelM, we compute the result C′ as the set of all constraints
whose corresponding control variables are set to true: C′ = {𝑐𝑖 |
M[𝑏𝑖 ] = true}. This set is satisfiable because by construction of
𝜙 we know that ∀𝑐𝑖 ∈ C′,M(𝑐 𝑗𝑖 ) holds, and hence we can extract
the substitution 𝜎 𝑗 from the modelM by taking 𝜎 𝑗 [𝑥] =M[𝑥 𝑗 ]
for every anchor 𝑥 . This set is also maximal because the solver
guarantees to maximize the total weight of control variables set to
true, which is equal to the total score of chosen constraints.

4.2 Hierarchical Decomposition

While the MaxSMT encoding of Sec. 4.1 is simple and works well
for small layouts, it is intractable on realistic web layouts, since the
query 𝜙 becomes too large to solve efficiently. To improve perfor-
mance, we leverage a common layout design principle in which the
layout of a view is determined only by the layout of its immediate
parent and siblings. Based on this principle, we can decompose the
global MaxSMT query into smaller queries for individual levels of
the view hierarchy. More specifically, instead of solving the global
query 𝜙 , which specifies the layout of all anchors X, our algorithm
iteratively solves sub-queries 𝜙𝑥 for each anchor 𝑥 ∈ X, where
𝜙𝑥 only specifies the layout of the direct children of 𝑥 , and so is
generally much smaller (and thus significantly easier to solve) than
the global 𝜙 . We present this algorithm in Fig. 4.

The algorithm maintains a worklist of sub-problems, where each
subproblem is represented as a pair (focus, dims𝑓 ) of a focus view
and its generalization dimensions. The worklist is initialized with
the root view root and input dimensions dims. In each iteration,
the algorithm picks a sub-problem (focus, dims𝑓 ) from the worklist,
and computes the set C′

𝑓
, which is the maximal subset of layout

constraints for the direct children of focus satisfiable across dims𝑓 . To
this end, restrict(focus, C) picks out the set C𝑓 ⊆ C of candidate
constraints that mention the anchors of the direct children of focus,
and select(𝐶𝑓 , focus, dims𝑓 , score) invokes the MaxSMT constraint
selection procedure from Sec. 4.1, restricted to the candidates C𝑓

and using focus as the root view. The algorithm then adds the
selected constraints C′

𝑓
to the output. Finally, lines 9–11 add a new

sub-problem to the worklist for each direct child of focus.
In this last step, the challenge is to pick the right generalization

dimensions dims𝑐 for the sub-problem rooted at child. If the range of
dimensions is too narrow, the algorithm might return a set C′ that
is not actually satisfiable; if the range is too broad, the algorithm
might return a set that is not maximal. To address this challenge,
we again use a MaxSMT solver to calculate the lower and upper
bound on the dimensions of child, given the currently chosen layout
constraints C′. For example, to calculate the upper bound, the
algorithm creates aMaxSMT query with the maximization objective
(child.width, child.height), subject to C′ and the upper bound on
the dimensions of the parent focus. The dimensions dims𝑐 are then
chosen at equal intervals between the lower and the upper bound.
We encode this query in the function calc_dims in line 10.

5 EVALUATION

Mockdown is implemented in Python [41, 45, 51, 61] and Type-
Script. We use Z3 version 4.8.7 [12, 17] as a MaxSMT solver and a
wrapper4 around the Kiwi [49] fork of Cassowary (in JavaScript) as
the constraint layout engine. Our implementation5 and our bench-
marks and analysis scripts6 are open and publicly available.
Research Questions. In our evaluation, we seek answers for the
following research questions.
(RQ1) DoesMockdown enable layout synthesis for a broad variety

of web applications?
(RQ2) Is noise-tolerant inference necessary for layout inference?
(RQ3) Does hierarchical decomposition help Mockdown to scale

with layout size?
(RQ4) How general is Mockdown, i.e. is it applicable to domains

beyond the web?

5.1 Benchmarks and Metrics

Benchmarks.We evaluateMockdown on a combination of bench-
marks from previous tools in the literature and our own curated
benchmark suite. One challenge in evaluating a tool like Mock-
down is assessing its behavior on websites of realistic scale and
structure. We collect our realistic benchmarks from existing web-
pages using a web scraper implemented in JavaScript7, which re-
turns a JSON in the format shown in Fig. 2. We likewise translate
benchmarks from previous tools into this JSON format. For RQ1,
RQ2, and RQ3, we evaluateMockdown on (1) a set of real, full web-
pages (macrobenchmarks), and (2) microbenchmarks, small bench-
marks that test specific aspects of layout synthesis. For RQ4, we
additionally use a suite of Android layouts from the literature [36].
Macrobenchmarks.We collected a set of nine real-world websites,
listed in Tab. 1, using our scraper. For each webpage, we identified a
range of page sizes inwhich the layout behaves linearly, and scraped
examples within this range. The dimensions for both train and test
examples were selected randomly within the range. Our benchmark
websites cover a variety of applications: author is a personal page
4https://github.com/MangoTeam/mockdown-client
5https://github.com/MangoTeam/mockdown
6https://github.com/MangoTeam/replication-package
7https://github.com/MangoTeam/auto-mock

https://github.com/MangoTeam/mockdown-client
https://github.com/MangoTeam/mockdown
https://github.com/MangoTeam/replication-package
https://github.com/MangoTeam/auto-mock
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of one of the authors [5], the three fwt- benchmarks are samples
from the Free Web Templates collection [6], ddg is the DuckDuckGo
search engine [62], hn is the HackerNews news site [3], ace is the
Ace code editor [2], conference is a software-engineering conference
website [4], ieeexplore is the full IEEE Explore website [1], which
we present in simplified form in Sec. 2. The number of views in
these websites range from 48 (fwt-running) to over 600 (hn), which
is over an order of magnitude larger than layouts handled by prior
work [11]. Each website was scraped at 20 different sizes with 10
designated as training examples and 10 as test examples.
Microbenchmarks. We assembled two groups of microbench-
marks: synthetic (repetitive, programmatically generated layouts)
and extracted (sub-layouts of the macrobenchmarks). The extracted
microbenchmarks were systematically constructed by 1) taking
each macrobenchmark (a real website) and 2) extracting all its sub-
stantial sublayouts. For example, for the IEEE Xplore website, the
microbenchmarks extracted are the navigation top bar, search bar,
collection of authors, featured news, featured articles, upcoming
conferences, and website footer. In order to test RQ3 (hierarchical
scaling) we selected a subset of extracted microbenchmarks (named
hierarchical) in which the top-level element is a one-dimensional
grid, and the subelements range in complexity from 1 to 23 views,
with a nesting depth of 1 to 7 levels. An array of elements is a com-
mon layout design pattern, which was present in several forms in
many of our benchmarks. For example, for the IEEE Xplore website,
both the collection of authors and the upcoming conferences are
arrays.Mockdown scales by hierarchical decomposition and array
elements are siblings in the layout hierarchy, so the hierarchical
benchmarks demonstrate the impact of hierarchical decomposition
on the overall performance of the algorithm.

The numbers and sizes of benchmarks in each group are listed
in Tab. 2; each microbenchmark has roughly analogous complexity
to the evaluation of prior work [11].
Numeric noise. Numeric noise can come from several different
sources, such as approximating a rational ratio using finite-precision
numbers (such as floating-point), quirks in the device-specific ren-
dering engine, and numerical errors in floating point arithmetic. As
demonstrated in our evaluation (Sec. 5.3) real-world layouts have
numeric noise and cause noise-intolerant synthesis to fail.
Metrics.We evaluate the quality of inferred layouts by using the
synthesized constraints to predict the placement of views at the
page sizes designated for testing, and directly comparing these pixel
dimensions to the original ground-truth view (which is scraped
from either a browser or an Android device, depending on the
dataset). We use two different metrics to quantify layout quality:

(1) RMSD: the root-mean-squared deviation of view corners
from the original placement to our computed placement, averaged
over views in the test set. RMSD captures the pixel difference be-
tween a predicted rendering and actual rendering with more weight
towards outliers; for example, a rendering with RMSD under 1 is
visually indistinguishable from the original, while a rendering with
RMSD over 5 would look different to an average viewer.

(2) Accuracy: percentage of views placed within a pixel of the
original view. Though used in prior work [11, 36], it can be mislead-
ing as a layout with low accuracy but low RMSD can be visually
more similar to the original than one with high accuracy but high

RMSD. In contrast RMSD does capture look-and-feel equivalence,
so accuracy is mainly useful for comparison when RMSD is low.

5.2 RQ1: Applicability to Realistic Applications

For each macro- and microbenchmark, we run Mockdown on the
training examples to synthesize constraints. We then pass these
constraints to the Kiwi layout engine along with the page sizes
from the test examples, which gives us a computed placement for
each of the test examples. We compare these computed placements
to the original scraped placements at the test example sizes. For
the microbenchmarks we set a synthesis timeout of 2 minutes and
for the macrobenchmarks we set a timeout of 30 minutes. Since
synthesis times might vary from run to run, we ran each experiment
three times and averaged running times.

For each benchmark, we measure the size of the benchmark
(number of views) as well as the following metrics: (1) Avg RMSD:
because RMSD is sensitive to page dimension, we average it over
testing dimensions, (2) Accuracy as defined in the previous subsec-
tion, (3) Synth time: the timeMockdown takes to synthesize the
layout, (4) The number of constraints inMockdown’s output, and
(5) Resize time: the time for Kiwi to calculate a new placement at
page resize time, averaged over the test set. This metric needs to
be low because layouts are meant to be interactive and the layout
would be recomputed when the user resized their window.

We performed this experiment twice, once with 3 training ex-
amples and once with 10 training examples, in order to measure
the effect of the number of training examples onMockdown. Both
experiments were evaluated on 10 testing examples.

Results. The results for the macrobenchmarks are given in Tab. 1
and for microbenchmarks in Tab. 2. Overall,Mockdown success-
fully finds a layout for all microbenchmarks and for most mac-
robenchmarks, only timing out on conference, the 3-example author,
and the 3-example ace. Moreover, independently of the number of
training examples, the synthesized layouts closely match the origi-
nal applications, with all RMSDs below 1. In addition, the accuracy
is also relatively high: above 70% for all benchmarks except hn.
Notice however that for hn, Mockdown still closely replicates the
visual look of the original layout (see the low RMSD) and indeed
the two layouts are almost identical to a visual inspection. It is not
clear why the accuracy would be low for hn in particular but it
could be due to rounding error from solving 6000 constraints. We
omit resize time in the interest of space: all resize times are below
0.0004 seconds (and all but hn are below 0.0001 seconds), indicating
that synthesized layouts can be used in an interactive setting with
dynamic resizing. To sum up, we answer RQ1 in the affirmative –
Mockdown synthesizes layouts that closely match the application
for many realistic web applications.

5.3 RQ2: Noise Tolerance

To evaluate the utility of noise-tolerant local inference and the
impact of our inductive biases of error and simplicity, we perform an
ablation study comparing three different local inference algorithms:
baseline: this is a rigid Daikon-style template instantiation algo-

rithm which instantiates invariants directly from the input
data, as described in Sec. 3.
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Table 1: Performance of Mockdown on macrobenchmarks.

Benchmark Number Number of Timeouts RMS (avg) Accuracy Number of Synthesis
of views Examples constraints time (s)

fwt-running 48 3 0% 0.26 100% 477 81
10 0% 0.19 100% 503 40

author 56 3 100% - - - -
10 0% 0.58 77% 626 608

ddg 57 3 0% 0.30 100% 540 41
10 0% 0.25 100% 543 41

fwt-space 63 3 0% 0.23 99% 731 103
10 0% 0.21 97% 748 49

ace 111 3 100% - - - -
10 0% 0.35 90% 1047 110

fwt-main 174 3 0% 0.34 93% 1719 301
10 0% 0.38 86% 1713 134

conference 256 3 100% - - - -
10 100% - - - -

ieeexplore 285 3 0% 0.37 96% 2793 506
10 0% 0.38 94% 2811 241

hn 614 3 0% 0.68 47% 6417 1689
10 0% 0.64 50% 6430 781

Table 2: Average performance of Mockdown on each group

of microbenchmarks.

Group Number of Number of Number of Timeouts RMS Accuracy Number of Synthesis
benchmarks views (avg) examples (avg) constraints time (s)

Synthetic 5 5 3 0% 0.00 100% 34 9
10 0% 0.00 100% 34 9

Extracted 55 36 3 9% 0.34 96% 127 12
10 8% 0.33 96% 137 12

nt-none: this implements the noise-tolerant template instantia-
tion but does not output confidence scores that guide global
inference.

nt-all: this implements the full noise-tolerant inference algorithm
with confidence scores based on simplicity and error.

We ran each algorithm on the full microbenchmarks set and
collected (1) Synthesis time, (2) Accuracy, and (3) RMSD error, as
defined above. Our experimental setup is similar to Sec. 5.2: we use
3 and 10 training examples and set a synthesis timeout of 3 minutes.
We ran each benchmark three times, and our plots present all trials
rather than aggregating each individual benchmark.
Results. Fig. 5 presents RMSD and accuracy, and Fig. 6 presents
synthesis times for these experiments.

The baseline algorithm is brittle in the presence of numeric noise
and so cannot be used for synthesis of realistic web layouts. As
seen in Fig. 5a, 24 of the 192 trials (64 microbenchmarks at 3 trials
each) for 3 training examples have very high RMSD error (above
10). When given 10 training examples (Fig. 5b) baseline does even
worse, with 30 of 192 trials with a have very high RMSD error. This
is because with more training samples a necessary constraint is
more likely to be ruled out due to noise, leading to some anchors
being completely unconstrained and thus rendered very far from
their intended position. Both noise-tolerant variants, nt-none and
nt-all, alleviate the brittleness and achieve low error.While nt-none
is visually similar to the original layout, it does not consider the
quality of candidate constraints, and this lack of bias in the selection
of the layout invariants results in a lower accuracy than that of

(a) 3 training examples

(b) 10 training examples

Figure 5: Ablation study of Error and Accuracy for different

noise-tolerance approaches.

(a) 3 training examples (b) 10 training examples

Figure 6: Ablation study of Synthesis time for different

noise-tolerance approaches.

baseline, as seen in Fig. 5a and Fig. 5b. The full noise-tolerant
inference algorithm uses inductive bias to pick invariants, which
improves the quality of the selected invariants, as demonstrated by
the improvement in both accuracy and RMSD error in nt-all.

With regards to synthesis time (Fig. 6), noise-tolerance has an
overhead, and nt-none and nt-all are slower than the native base-
line algorithm. This is because the baseline algorithm infers strictly
fewer candidate invariants. The difference between nt-none and
nt-all is negligible, which indicates the biases do not impede per-
formance. With more training examples, the difference between the
baseline performance and the noise-tolerant performance narrows,
as additional examples focus the inductive bias of noise-tolerant
inference, resulting in fewer candidate invariants.

To sum up, we answer RQ2 in the affirmative: noise-tolerant
inference is necessary for layout inference as it allows Mockdown
to always find precise constraints and achieve a low error. This
does come with a performance overhead, but not a large one.

5.4 RQ3: Scaling

To test howMockdown scales with the size of the layout, we use
the hierarchical microbenchmarks, which have a one-dimensional
grid layout. For each of these grid microbenchmarks, we generate
variants of different sizes by truncating the grid after 𝑛 elements,
with 𝑛 ranging from one to ten (or the original size, whichever
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is smaller). We then run two variants of Mockdown: the origi-
nal version hier with hierarchical global learning, as described in
Sec. 4 and a “flat” version flat that does not perform hierarchi-
cal decomposition and instead performs global inference with a
single MaxSMT query. For each grid benchmark and tool variant
we measure synthesis time on 4 training examples. We ran each
experiment five times and average the results for each benchmark.
Results. We present the results in Fig. 7. Overall we find that
hier outperforms flat, sometimes drastically. On almost half of
our benchmarks (5 of 11), both variants finish quickly and so the
synthesis time is comparable. This is because these benchmarks
are relatively simple so decomposition does not provide a benefit.
On all of the remaining 6 benchmarks hier performs strictly better
for all sizes, scaling linearly in the number of elements in the array,
and with the exception of hn-posts-ten decomposition results in
tractable subproblems. Even in this case hier outperforms flat

(which cannot make progress at all) – this is because each array
item is itself complex and deeply nested with an element size and
depth of 23 and 6. More generally hier reduces the synthesis task
to the hardest subproblem. By contrast, flat attempts to solve a
single global task and so becomes intractable from a certain size
in 5 benchmarks. We therefore answer RQ3 in the affirmative:
hierarchical deconstruction is crucial for synthesizing web layouts.

5.5 RQ4: Generality

In this experiment we evaluate whether Mockdown still performs
well when input examples are not generated by our scraper, and
more generally, are not from the web domain. To this end, we
use the benchmark suite from the latest version of the layout syn-
thesizer InferUI [36]. The suite consists of 644 Android layouts
and is a subset of the popular Rico dataset [18]. For each Android
application, the dataset contains layout renderings at 3 different di-
mensions. We evaluatedMockdown using two of these layouts as a
training sample and the third as a test sample. We measured RMSD,
Accuracy, Synthesis Time, and Resize Time (all as defined above)
with a synthesis timeout of 3 minutes, and we ran the experiment
3 times to collect aggregate data.
Results. We present RMSD and accuracy in Fig. 8. Overall, Mock-
down performs well on these benchmarks, synthesizing an indis-
tinguishable layout (RMSD less than 5) for 545 of 644 Android
apps, (and an accurate layout for 538 of them). Of the remaining 99
apps, 75 time out. There are two potential causes for this. First, the
structure of apps in the InferUI dataset is flattened, so hierarchical
decomposition is not applicable. Second, the 2 training examples
cause local inference to produce many more candidate constraints.

We do not report a direct comparison between Mockdown and
InferUI because the techniques are complementary. InferUI is
designed to synthesize layouts from a single example and relies
on Android-specific biases to deal with the resulting ambiguity.
Mockdown on the other hand is designed to be more domain-
general, and hence is unable to produce good-quality results from
just one example. RunningMockdown on a single example resulted
in significantly worse results than those reported for InferUI.

Nevertheless, we find it encouraging that just a single additional
input example already allows Mockdown to produce highly accu-
rate results without relying on Android-specific domain knowledge.

To sum up, we answer RQ4 in the affirmative:Mockdown suc-
cessfully synthesizes layouts for Android applications using input
examples from an existing dataset.

5.6 Threats to Validity

The main threat to validity for our experiments is their origin. First,
some of our microbenchmarks are generated synthetically, though
we have tried to counter this by generating representations of com-
mon layout idioms (e.g., a center panel with fixed margins). Second,
our macrobenchmarks and by extension the extracted set of mi-
crobenchmarks are scraped from existing websites. The numeric
noise that exists in scraped layouts (e.g., noise due to rounding) rep-
resents only one source of data forMockdown, and may not match
the type of noise that will appear in layouts built by a designer in a
direct manipulation tool. In principle, Mockdown’s noise-tolerant
local inference should be able to handle that kind of noise as well,
but we leave the empirical evaluaiton of this claim to future work.

6 DISCUSSION

Unsupported layouts. Our results indicate that high errors co-
incide with longer synthesis times or timeouts. This is often the
case in layouts that require constraints thatMockdown does not
support, such as constraints for aspect-ratios or constraints for
rendering text. The unsupported constraint would not be found
in the local inference phase, leaving global inference to pick from
many poor candidates, making its work more time consuming.

Additional examples. Unlike many works in example-based syn-
thesis [28],Mockdown speeds up when given more examples. This
is a benefit of the division of labor between local and global infer-
ence: more examples rule out more constraints at the local phase,
resulting in fewer inputs to the global phase.

The cost of noise. Mockdown’s noise tolerance increases the
number of candidate constraints to be considered by global infer-
ence, which impacts performance. However, we believe the more
accurate layouts are worth the longer synthesis times. Most realistic
inputs, whether derived by scraping or direct manipulation, contain
noise, making handling noisy inputs crucial.

Success of decomposition. Hierarchical decomposition proved
useful in isolation, making components like grids tractable. How-
ever, when synthesizing full webpages this still may not be enough.
Since hierarchical decomposition handles the relation between
neighboring components, it is as efficient as its hardest subtask (i.e.,
the view with the most direct children).

7 RELATEDWORK

InferUI. The closest work to ours is InferUI [11, 36], which syn-
thesizes constraint-based Android layouts from a single example.
In the original work [11] InferUI reduces synthesis to a single
SMT query that requires the layout to (1) precisely match the
example and (2) satisfy a set of robustness properties on unseen
sizes (e.g. “views do not overlap”, “views fit on screen”). To im-
prove efficiency, InferUI uses a probabilistic model learned from
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(a) Hierarchical (b) Flat

Figure 7: Synthesis time in seconds of Hierarchical and Flat global generalization algorithms as a function of the number of

elements in a grid-based layout. Lower is better.

Figure 8: Mockdown’s Error and Accuracy on Android lay-

outs.

programmer-written layouts. In the followup work [36], the hand-
crafted robustness properties and the probabilistic model are re-
placed with a learned neural model that strengthens the synthesis
specification with an additional, predicted example.

At a high-level, the difference between both InferUI techniques
and Mockdown is that InferUI uses a domain-specific bias (either
hand-crafted or learned) to synthesize simple Android layouts (up
to 20 views) from a single input, while Mockdown synthesizes
domain-general and complex layouts (up to hundreds of views)
from multiple inputs. InferUI has no mechanism to handle noise
in the input examples (though their layout dataset does contain
noisy inputs). Noisy data does not impact InferUI as much because
when learning from one example, the synthesizer can instantiate
templates with the noisy data and produce candidate constraints
(albeit with slightly incorrect coefficients). In contrast, withmultiple
examples noisy data is problematic because the correct constraint
template is rejected outright as it cannot fit the noisy data.

We consider Mockdown complementary to InferUI: our ap-
proach is more general, at the cost of requiring a fewmore examples
from the user. An interesting direction of future work is to combine
Mockdown’s noise-tolerant, hierarchical inference engine with
InferUI’s techniques for incorporating domain-specific bias.

Visual Layout Synthesis. Other tools that assist users with cre-
ating GUIs either do not take the example-based approach [31, 34,
35, 63], focus on aspects of GUI other than the visual layout [8, 60]
or generate static, vector-graphics-level layouts from images or
hand drawings [10, 15, 16, 56]. Mockdown could complement the
latter line of work by further generalizing the output of such tools
into a resizable, constraint-based layout. A related area is synthesis
of graphics programs from images [21, 42, 57], which focuses on
recognizing repetitive patterns in images, and typically considers a
small number of visual elements (so scalability is less of a concern).

Constraint Inference.Daikon [22, 44] has pioneered the template-
based constraint inference technique that our local inference builds
upon;Mockdown enhances this technique with domain-specific
optimizations such as visibility-guided template instantiation and
statistical parameter inference. There is a rich body of work on data-
driven inference of inductive loop invariants [24, 25, 38, 43, 52, 64].
Although these techniques also infer linear relations from data, the
setting is very different: invariant inference assumes abundance
of data and ability to generate counter-examples, so the challenge
is to efficiently find constraints that precisely fit the data, while
generalization to unseen data is not an issue.

Program Synthesis. Program synthesis from examples has been
used to automate tasks inmany domains, such as datawrangling [20,
29, 37] and web scraping [7, 14, 32, 46]. Mockdown’s global infer-
ence technique is based on symbolic program synthesis [33, 54, 59],
which uses a constraint solver [17] to search the space of programs.
MaxSAT and MaxSMT [12] solvers have been used for optimal pro-
gram synthesis, e.g. in [9, 23]. Some program synthesis techniques
are capable of handling noisy examples [19, 30, 47, 53], but most
are geared towards detecting outliers (a few completely wrong ex-
amples), whereasMockdown needs to be tolerant against a small
amount of noise in each example. The only work we are aware
of that handles noise distributed over a large portion of examples
is [30], but this technique is specific to Version-Space Algebras and
is not applicable to constraint-based layout synthesis.
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