
Small-Step Live Programming by Example
Kasra Ferdowsifard Allen Ordookhanians Hila Peleg

UC San Diego UC San Diego UC San Diego
kferdows@eng.ucsd.edu aordookh@ucsd.edu hpeleg@eng.ucsd.edu

Sorin Lerner
UC San Diego

lerner@cs.ucsd.edu

ABSTRACT
Live programming is a paradigm in which the programming
environment continually displays runtime values. Program
synthesis is a technique that can generate programs or program
snippets from examples. Previous works that combine the two
have taken a holistic approach to the way examples describe
the behavior of functions and programs. This paper presents a
new programming paradigm called Small-Step Live Program-
ming by Example that lets the user apply Programming by
Example locally. When using Small-Step Live Programming
by Example, programmers can change the runtime values dis-
played by the live visualization to generate local program
snippets. We implemented this new paradigm in a tool called
SNIPPY, and performed a user study on 13 programmers. Our
study fnds that Small-Step Live Programming by Example
with SNIPPY helps users solve harder problems faster, and
that for certain types of queries, users prefer it to searching
the web. Additionally, we identify the user-synthesizer gap,
in which users’ mental models of the tool do not match its
ability, and needs to be taken into account in the design of
future synthesis tools.

Author Keywords
Live Programming, Program Synthesis

CCS Concepts
•Human-centered computing → Graphical user inter-
faces; •Software and its engineering → Automatic pro-
gramming;

INTRODUCTION
Live programming is a paradigm where the programming
environment continually displays runtime values. While live
programming provides immediate feedback about the current
state of execution, it does not explicitly help the programmer to
discover the next line of code they need to write to accomplish
their goal.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proft or commercial advantage and that copies bear this notice and the full citation
on the frst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specifc permission
and/or a fee. Request permissions from permissions@acm.org.

UIST’20, October 20–23, 2020, Minneapolis, MN, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-6708-0/20/04. . . $15.00

DOI: https://doi.org/10.1145/3313831.XXXXXXX

Nadia Polikarpova
UC San Diego

npolikarpova@eng.ucsd.edu

On the other hand, program synthesis is a technique that helps
programmers by generating code automatically. There are
many approaches to program synthesis, but in this paper we fo-
cus on a class of techniques called Programming-by-Example
(PBE), where the programmer provides input-output exam-
ples, and the synthesizer produces candidate programs that
satisfy these examples. While program synthesis can generate
code that accomplishes a given goal, traditional synthesizers
are stand-alone and not integrated tightly into the develop-
ment work-fow, which makes it hard for the programmer to
formulate the goal for the synthesizer to solve.

As such, live programming and PBE are perfectly suited for
each other: the live programming environment provides all
the values needed for the programmer to easily provide exam-
ples without a signifcant break in workfow; and synthesis
from examples helps address a limitation of live programming,
which is that it does not explicitly generate statements.

Because of this symbiotic relationship, there has been prior
work on combining Live Programming with PBE, sometimes
called Live Programming by Example [39, 38] or synthesis
from Direct Manipulation Interfaces [8, 31, 19]. However,
broadly speaking, examples in this prior work describe behav-
ior holistically, meaning that each example impacts either the
entire program, or a large part of the program (e.g., an entire
function). In the literature on program semantics, this kind of
specifcation is usually referred to as a big-step semantics [49].

In this paper, we describe a different approach to Live Pro-
gramming by Example, which we call Small-Step Live Pro-
gramming by Example (SSL-PBE). In contrast to prior work,
SSL-PBE allows the programmer to specify examples in a
live programming environment, but only for a single missing
statement. Synthesis in SSL-PBE starts in a live programming
environment where program state is displayed after each state-
ment. While in traditional live programming the displayed
state is read-only, in SSL-PBE the runtime values can be modi-
fed. When the programmer edits values in the state, a program
synthesizer runs to generate a local program snippet that sat-
isfes the new data. SSL-PBE is unique in that it enables a
new programming paradigm where the programmer “leads”
the generation of the program with data.

To understand the viability of this new paradigm, we imple-
mented SSL-PBE for the Python programming language, in

https://doi.org/10.1145/3313831.XXXXXXX
mailto:npolikarpova@eng.ucsd.edu
mailto:permissions@acm.org
mailto:lerner@cs.ucsd.edu

a tool named SNIPPY. SNIPPY uses the live programming
environment of Projection Boxes [27] and a custom-made enu-
merative program synthesizer to generate Python statements.

Through a user study, we demonstrate that SSL-PBE is easy to
use, and has an impact on task time and correctness on more
diffcult tasks. Our study also shows that the synthesizer can
generate between 18% to 66% of the code, thus demonstrating
that the synthesizer and the human can work together to form
a complete solution. Finally, our user study also shows that al-
most all our participants preferred SNIPPY over searching the
internet in some cases, the main reasons being that compared
to the internet searches SNIPPY incurs a lower cognitive bur-
den, automatically connects the snippet with the surrounding
code, and provides a more compact solution.

The main contributions of this paper are:

• We present a novel paradigm called Small-Step Live Pro-
gramming by Example, in which programmers can modify
live data to generate code snippets.

• We present an implementation of this paradigm in a tool
called SNIPPY.

• A user study of SNIPPY on 13 programmers found that
SNIPPY complements web searches in bridging certain
types of knowledge gaps, and that SNIPPY helped users
solve harder problems

• We identify the user-synthesizer gap, where a mismatch
between the user’s mental model of the synthesizer and
the abilities of the synthesizer hinders the user’s ability to
use the synthesizer effectively. We believe that the user-
synthesizer gap needs to be addressed as synthesis tools
begin to target programmers rather than end-users.

MOTIVATING EXAMPLE
A programmer named Kayla is processing a text fle using
Python. One part of the processing involves reducing a name
(e.g., “Augusta Ada King”) to a non-standard form of initials1

(e.g., “A.A.K”). Kayla has a lot of programming experience,
but is only a casual Python user, which means Kayla does not
immediately know how to achieve this task in Python. Being
an experienced programmer, Kayla breaks down the task into
two components: getting the frst letter of each word, and
reconnecting them in the desired format.

Opportunistic programming
Kayla turns to searching for the answer using a search engine.
Unsure of the precise string terminology of Python, but used
to relying on search engines, she tries the natural language
search, “Python frst letter of every word”. The frst result is a
link to the Stack Overfow question “How can I get the frst
letter of each word in a string?” which has no accepted answer
but upon further reading has code which looks suitable in
the comments discussing the question. Copying the code and
modifying the variable names, Kayla now has the following:
letters = [w[0] for w in s.split(' ')]

1The task is taken from this competitive programming exercise:
https://www.codewars.com/kata/57eadb7ecd143f4c9c0000a3

This code returns a list of initials. Now all that remains is
to format it. Since the required formatting is trickier than
standard initials punctuation, Kayla knows that a loop is not
the easiest way to go in this case. Kayla recalls that Python
has a join method to convert arrays to strings, so she tries:
letters = [w[0] for w in s.split(' ')]
res = letters.join('.')

However, this code produces the runtime error AttributeError:
’list’ object has no attribute ’join’, which Kayla now
looks up online as well. After some digging, Kayla realizes
that join is a method on strings, so the correct code is in fact:
letters = [w[0] for w in string.split(' ')]
res = '.'.join(letters)

Small-Step Live Programming by Example
Let us consider the same task again, but instead Kayla will
use our proposed approach, Small-Step Live Programming by
Example, as reifed in our SNIPPY tool. Kayla starts in a live
programming environment, in this case Projection Boxes [27],
as seen in Figure 1(a). The visualization shows at each line
a projection box with the values of all variables at that line.
However, while in a traditional live programming environment
the visualization is read-only, in our approach the values of
variables in the visualization can be edited to show the pro-
grammer’s intent. Thus, Kayla edits the value of letters in
the projection box to enter the desired value, as shown in Fig-
ure 1(b). By this, Kayla is stating that she wants SNIPPY to
generate a code snippet that will produce ['A','A','K'] in the
letters variable when s is 'Augusta Ada King'. In the synthesis
literature this is called an input-output example. If the state-
ment Kayla wanted to generate was executed multiple times
(i.e., it is inside a loop or in a function that is called multiple
times), the projection box would have one line per execution
and Kayla would be able to provide one or more input-output
examples, one for each execution of the statement.

Once Kayla has provided some input-output examples by
changing the live visualization, these examples are sent to
a Programming by Example (PBE) synthesis engine, while the
user is told that the synthesizer is working in the background
Figure 1(c). In previous PBE tools aimed at programmers,
providing examples is often a weak point of the interaction
model, sometimes requiring a break in the workfow that could
be as severe as switching to a different tool and editing its con-
fguration fles. Through direct manipulation of live data, our
approach makes the specifcation process seamless. Further-
more, focusing the user’s attention on the value assigned to
a single variable turns the synthesizer into a helper utility
in a larger task, which harnesses the still-limited power of
synthesis to solve specifc sub-tasks for the user.

Within seconds, the SNIPPY synthesizer fnds a solution and
adds the generated code snippet, as shown in Figure 1(d).

Next, Kayla creates a new variable, called res, as shown in Fig-
ure 1(e) – for brevity of the fgure, at this point we confgured
Projection Boxes to not display the variable s anymore. Kayla
changes the projection box value of res to be 'A.A.K', as shown
in Figure 1(f). This provides the synthesizer with an input-
output example stating the output in res should be 'A.A.K'

https://www.codewars.com/kata/57eadb7ecd143f4c9c0000a3

Figure 1. Writing code using SNIPPY: (a)-(d) generates the frst statement and (e)-(h) generates the second statement.

when s is 'Augusta Ada King' and letters is ['A', 'A', 'K'].
Within a few seconds, the SNIPPY synthesizer generates a
statement, as shown in Figure 1(g)-(h). To fnish the code,
Kayla changes the return statement to return the res variable.

In summary, this example showed how Kayla was able to fnish
writing the code, without leaving the IDE, without searching
online, and without bearing the cognitive load of thinking
about the details of list comprehension, split or join.

RELATED WORK

Live programming
Live programming is a paradigm that provides immediate
visualizations of a program’s behavior. This research area
dates back to the seminal work of Hancock [18]. Live pro-
gramming environments have been developed for Python [15,
22], Java [5], Javascript [37, 1], Lisp [2] and ML-like lan-
guages [32]. There is also work categorizing different kinds
of liveness [43, 47], and studies exploring the benefts of
live programming [48, 23]. Traditionally, live programming
only provides feedback to the programmer, and not the abil-
ity to edit the output or synthesize new pieces of code. Our
work distinguishes itself from traditional live programming by
contributing a new paradigm where changing data in the visu-
alization can produce small code snippets for the programmer.

Big-step program synthesis and repair
Program synthesis takes a specifcation of behavior and returns
a program satisfying the specifcation. Automatic program
repair (APR) takes a program and a specifcation, and mini-
mally changes the program to satisfy the specifcation. Both
commonly take specifcations that describe the full program,
or as previously desribed, “big-step” specifcations. Most syn-
thesis and APR literature assumes a user that provides the
specifcations, but does not focus on the experience of the user
when creating the specifcations or processing the results.

Programming by Example
Programming by Example (PBE) is a feld of program synthe-
sis where behavior specifcations are provided as input-output
pairs. This approach has been applied to string transformations
of Excel data [13] and fle renaming [14], data extraction [25],
and transforming tabular data [51], all synthesis solutions for
end-users. In APR and synthesis aimed at developers, exam-
ples can also take the form of unit tests [29, 30, 50, 26].

Since examples are partial specifcations, often resulting in too-
specifc programs that require more examples to generalize,
[36] question their suffciency as a specifcation tool. Entering
examples is also error-prone, a problem tackled by [35].

Live programming by example
Two approaches for synthesis for developers are named “Live
Programming by Example”. The frst [39] allows users to
edit HTML output causing changes to its rendering JavaScript
code. The second [38] consists of two connected fles, a code
fle with functions and an examples fle with unit tests for the
functions. Unit tests are executed for live programming data,
and modifying a unit test will attempt to synthesize a new func-
tion where the tests pass. Both approaches shift the audience
of PBE from non-programmer end-users to programmers who
interact with the synthesized code, but both still use examples
as a holistic mode of specifcation. In SNIPPY, the separation
between code and data is not as severe: live values are adjacent
to the code, not in another fle. Additionally, SNIPPY uses
examples as small-steps on intermediate values, rather than
just the output of the entire execution, giving users access to
localized synthesis from local examples.

Domain specifc synthesis tools
Several recent projects focus on domain-specifc example-
driven tools for non-programmers: Rousillon [7] generates
web scrapers, Bespoke [45] GUI applications, and Wrex [9]
Python wrangling code in Jupyter Notebooks. SNIPPY targets
general programming, rather than one domain-specifc task.

As such, our intended users are programmers, not data scien-
tists or power-users, and we augment a different workfow.

Direct manipulation interfaces as specifcation
Direct manipulation user interfaces [40] are visualizations of
the system state that can be changed, and are prevalent as
editors of graphical representations. Sketch-n-Sketch [8, 31,
19] is a direct-manipulation editor for programmable graphical
formats such as SVG, HTML, and LaTeX, where direct manip-
ulation changes to the visual output become repair operations
on the generating code and inputs. [19] takes this further by
adding refactoring tools and turning the direct manipulation
editor into a visual programming environment. The direct
manipulation workfow is aimed at modifying visual objects
in languages with little separation between code and input.
SSL-PBE is a technique for more expressive langauges.

Small-Step Program Synthesis
Several existing synthesis and APR techniques rely on a small-
step specifcation, or specifcations that tackle only local be-
havior within a larger program.

Sketch and sketching
Sketching (popularized by Sketch [42] and modifed into a
variant used by many synthesis works [11, 41, 21, 34]) is a
method for specifying to the synthesizer a partial implementa-
tion of the target program with holes, initially missing numeric
values but now missing expressions or statements. Sketches
isolate local steps for the synthesizer to fll, and are usually
accompanied by a big-step specifcation (e.g., examples) from
which a local specifcation for the holes is derived.

SNIPPY differs from these in two ways: frst, synthesis queries
in SNIPPY are themselves locally-specifed, and do not require
the potentially-lossy transformation from a larger specifcation,
and second, and enabled by the previous, SNIPPY can be used
without end-to-end specifcations for the full program, which
means it can be used to perform exploration.

Single statement synthesis
Small-step synthesis has been worked into IDEs to attempt
predicting the next statement. For example, InSynth [17] code-
completes assignments using the type of the assigned variable
as the specifcation. As another example, CodeHint [11] al-
lows the programmer to stop the program at a breakpoint and
generate a new version of the next statement by providing a
specifcation on the current program state (typically a typef-
based specifcation, though examples are possible). The user
can trigger the breakpoint again to provide specifcations for
more inputs, but those only serve to rule out candidates gen-
erated for the frst input state. While in CodeHint providing
specifcations for multiple inputs requires running to the break-
point again and again, in SNIPPY the PROJECTION BOXES
display fattens both loops and multiple inputs into a single
list, allowing the user to specify any and all inputs at once.

Both CodeHint and InSynth return several ranked options
for the completion, a different interaction model than that
of SNIPPY, which returns a single result. While returning
a single result is an all-or-nothing approach, it also means
that users do not need to select out of multiple options, a task

that previous work has shown is diffcult for users to perform
correctly without in-depth inspection [36].

Program states as specifcations
Another form of local specifcations is direct state manipula-
tion, or changing the program’s internal state to create repair
specifcations, as in Wolverine [46] and JDial [20]. Both pro-
vide ways for users to modify the values of variables along an
execution trace of the program on a test input, then create a re-
pair to the program. Wolverine, which has a gdb-like interface,
also hot-patches the repair and allows debugging to continue.

Unlike both projects, which are APR tools, SNIPPY is a syn-
thesis tool. This means that SNIPPY’s user is not working on
an already fully-written program and only correcting a bug
found in the course of the execution.

Both projects also tackle a common problem: APR can fnd
a trivial fx that satisfes a specifcation by removing desired
functionality. Wolverine’s solution is to let the programmer,
while debugging the program, mark an intermediate state as
specifcation, declaring the unmodifed state should appear
in the execution trace of the fnal program. SNIPPY faces a
similar problem, declaring certain behavior as already-correct
while not forcing the user to specify all inputs. Its solution, dis-
cussed in the next section, is inspired by Wolverine’s solution,
adapted from repair to synthesis.

USER INTERFACE
We implemented SNIPPY on top of PROJECTION BOXES [27]
by making the variable values editable in each projection box.
After the programmer modifes some values in a projection
box, every modifed row becomes an example that is sent to
a Programming by Example (PBE) synthesizer. Recall that
the projection box for a line in the program contains multiple
rows if that line is executed multiple times.

Activating SNIPPY
In order to allow SNIPPY to naturally become part of the de-
velopment workfow, it can be activated and specifed entirely
via keyboard operations. To assign a synthesized value to a
variable, the user begins typing an assignment statement, but
instead of a concrete value, they assign ??:

newVar = ??

This special token, which is not valid Python code, temporarily
becomes the temporary assigned value 0 (since Python vari-
ables are not typed, a specifc initial value by type cannot be
generated), and the focus is moved to the now-editable value
of the variable, as in Figure 1(b). The user can then enter a
new value, and start the synthesizer by hitting Enter .

Modifed values are then packaged as examples to the synthe-
sizer, where each input state includes all variables that are in
scope at the line that is being synthesized, namely all variables
that appear in the projection box at that line.

Editing examples
Some examples are inconvenient to type, but easier to edit. For
example, if the user wants to turn the string 'Augusta Ada King'
in the variable s into a list of words ['Augusta','Ada','King'],
they can start with a blank variable value and enter in every

Figure 2. Using SNIPPY with multiple values. (a) PROJECTION BOXES
showing multiple values for the same line, and (b) providing only some
of the values as examples to SNIPPY.

word into the list, but it is easier and far less error prone to start
with the value of the string and edit it into a list. To this end,
the user can activate SNIPPY with an expression reference:
newVar = s??

This will put the user in edit mode for the values of newVar
as before, but instead of a default initial value will populate
newVar with the value of s.

Multiple examples
PROJECTION BOXES can show multiple values for a line of
code. This can happen in one of two cases: if the function
is called multiple times with multiple values, as seen in Fig-
ure 2(a), or if the current line of code is inside a loop. For
SNIPPY, this means that there are different values for the in-
scope variables that can be sent to the synthesizer as multiple
examples for the same expression. When the PROJECTION
BOXES contain multiple rows, the edited variable becomes
editable in all rows, as seen in Figure 2(b), and the user can
travel between the values using the Tab key.

Sometimes the user does not want to provide an output value
for every row in the PROJECTION BOXES. A simple example
for this would be inside a loop with many iterations, where
two or three examples will suffce to demonstrate the desired
functionality. SNIPPY allows users to only edit some of the
output values. Rows where the value was changed are submit-
ted to the synthesizer as examples, and unchanged rows are
ignored. Figure 2(b) shows highlighted rows that were edited
by the user and will be sent as examples to the synthesizer.

Occasionally, the value of some of the rows already exhibits
correct behavior. These already-correct rows will not be
changed, but if they are not sent to the synthesizer along
with changed rows, a program that changes their behavior may
be synthesized. To avoid this, SNIPPY lets the user specify
that the output value in a row is correct as-is by selecting it
with Shift + Enter . A variant of this problem was previously
solved in Wolverine [46], where the user can mark a state as
“specifcation” the execution must still pass through, but with
no assurance which line of code will pass through it.

Figure 3. The structure of our generate-and-test synthesizer. Programs
are enumerated and passed to the validator to be tested against the user-
provided examples.

A Synchronous Modality
SNIPPY synthesis calls are synchronous. This means that
once the user calls the synthesizer, a wait message (shown in
Figure 1(c)) appears, and the user waits for synthesis to quickly
fnish or fail. An asynchronous workfow could have been
explored, but it would not allow SNIPPY to be used in a more
exploratory manner. The synchronous workfow motivates
us to use a timeout that is as brief as possible, which means
our synthesizer must be extremely effcient to fnd meaningful
expressions within that timeout. We chose a timeout of seven
seconds, enough to synthesize programs of up to height 3
(zero-based) on several desktop and laptop architectures, while
staying well below a distruptive interruption [33]. In the next
section, we discuss the design considerations when building
such a synthesizer.

SYNTHESIZER IMPLEMENTATION
We designed and implemented a custom synthesizer to gener-
ate the one-line Python snippets requested by SNIPPY users.
The synthesizer that we built is known as an enumerating
generate-and-test synthesizer: broadly speaking, enumerating
means that the synthesizer enumerates programs by expanding
a grammar that represents the space of programs to search, and
generate-and-test means that the synthesizer evaluates each
enumerated program to test whether it fts the given examples.
Figure 3 shows an overview of SNIPPY as a system, including
details of our enumerating generate-and-test synthesizer.

As with any synthesizer, the astronomical size of the search
space is the main challenge, which we begin to mitigate us-
ing the known technique of observational equivalence [44, 3],
which unifes all programs that behave the same on inputs from
the example. However, our setting adds several additional chal-
lenges: (i) Python is a dynamically typed language, so types
cannot be used out of the box to constrain the search, (ii) our
synthesizer generates Python list comprehensions, which are
loops, a hard problem for synthesis, (iii) our synthesizer needs
to generate string constants to enable the string manipulation
code that Python programmers write, and (iv) our synthesizer
should work with as few examples as possible, despite PBE’s
propensity for trivial solutions for such tasks.

Yet, despite all these challenges, we need to create a synthe-
sizer that operates in an interactive setting, able to generate
useful snippets in seconds. We discuss how we address each
of these four challenges, while maintaining interactive speeds,
in each of the following subsections.

E ::= I | S | L | . . .
I ::= x | I+I | S.find(S) | max(IL) | int(S) | . . .
S ::= s | S+S | S[I] | S[I:I] | str(I) | S.join(SL) | . . .
L ::= SL | IL
SL ::= sl | S.split(S) | [S for var in L] | . . .
IL ::= il | [I for var in L]
x ::= vars with only int values in examples
s ::= vars with only string values in examples
sl ::= vars with only list-of-string values in examples
il ::= vars with only list-of-int values in examples

Figure 4. Fragment of the expression grammar supported by SNIPPY. E
is the root expression; I are integer expressions; S are string expressions;
SL are list-of-strings expressions; IL are list-of-ints expressions.

Python as a typed language
Python is a dynamically typed language, i.e., type-checking
is deferred until runtime. This means a lot of fexibility, even
allowing a variable at one statement in the program to take on
different types each time the statement is executed. However,
our synthesizer runs statically (i.e., before runtime), at which
point type information in Python is not available. Without
type information for the generated expressions, any possible
operation could be applied to a given expression, which makes
the search space intractably large. Instead, we treat Python as
a typed language with integers, strings, booleans, and lists and
dictionaries that are homogeneous in type.

We do this by inferring variable types from the examples,
and designing a grammar that has productions for each type,
restricting the parameters of functions to certain types. To
provide a sense of what this grammar looks like, Figure 4
shows a fragment of the expression grammar used in SNIPPY
(note it is far from the full grammar). This grammar only
allows for homogeneous lists (lists of all integers or lists of
all strings), and also restricts certain functions to operate only
on certain types, e.g., max is restricted to lists of integers even
though max can run on iterable types of all kinds. While
this limits the SNIPPY synthesizer, it also greatly reduces the
number of programs that must be searched, which lets SNIPPY
fnd large and useful programs within seconds.

List and Dictionary Comprehensions
Our synthesizer is a bottom-up synthesizer, meaning that it
uses production rules from the grammar to combine previ-
ously discovered expressions into larger expressions. For
example, using the grammar in Figure 4 and the synthesis
call in Figure 1(c), the enumerator starts with the terminal
production rules, enumerating constants, including ' ', and
the variables, in this case the string s. The enumerator then
applies the rule S ::= S.split(S) to create all expressions of
this form, with S replaced by any of the current string expres-
sions, which are the string constants and s, generating (among
others), ' '.split(s) and s.split(' '). The process contin-
ues, iteratively building larger and larger expressions. Each
expression is tested against the examples, and if an expression
that satisfes all examples is found, it is returned to the user.

Unfortunately, this process breaks down for list and dictio-
nary comprehensions that SNIPPY must support. Consider the
production SL ::= [S for var in L] for making a list of

strings from another list. The nonterminal S (the “body” of
the comprehension) can include the new variable var, so S in
this production is actually derived from a different grammar
than L (since L cannot access var). To account for this, our
synthesizer uses the approach proposed in [34]: expressions
are generally built using a standard bottom-up approach, ex-
cept bodies of comprehensions, which are built using nested
bottom-up enumerations. For SL ::= [S for var in L],
the enumerator builds L bottom-up, and for each generated
L it fxes L in the expression [S for var in L], and then
starts a nested enumeration for S.

Performing this new nested enumeration for comprehension
bodies has three benefts: (1) the nested enumeration can
include the comprehension variable var (2) the nested enu-
meration can omit the production rules for comprehensions,
preventing nested comprehensions and reducing the search
space, and (3) most importantly, this nested enumeration can
incorporate the inputs from the examples into observational
equivalence, as the external enumeration does, with the help of
another technique called input extension [34], and by doing so
drastically reduce the search space of the nested enumeration.

Discovering string literals
Bottom-up enumeration has to start with a set of constant
literals like 0 and 1. To make synthesis effcient this set must
be small. SNIPPY supports the constants -1, 0, 1, and ' ',
though more constants can be enumerated with simple post-
processing. E.g., the expression 1 + 1 + 1 (generated by the
grammar) can be simplifed via post-processing to 3.

However, for string problems, particularly string wrangling,
there is often a need for string literals that cannot be discov-
ered by the grammar, even with the above post-processing.
One could, in theory, ensure the grammar contained string
concatenation and every ASCII character, which would let the
synthesizer construct any ASCII string, but this would make
the search unusably slow, and still only cover English strings.

Another approach to this problem, taken by the benchmark
suite of the competition for syntax-guided solvers [4], is to
adapt the synthesizer’s grammar for every problem, adding
only the string literals needed on a per-task basis. However,
this does not suit a live system like SNIPPY where the user can
ask for arbitrary problems to be solved, since we do not want
to burden the user with specifying string literals each time.

SNIPPY implements a middle ground between these ap-
proaches. Its grammar is initialized with a single string literal,
’ ’, but is extended as necessary. Before enumeration, the
synthesizer searches the outputs of the provided examples
for substrings that do not appear in any of the inputs or the
grammar, and adds them to the grammar. For instance, in our
motivating example, the output initials are separated by the
character ’.’, which is not part of the SNIPPY grammar. If it
does not appear in any of the input variables in the example,
then it will be added to the grammar. However, if the user
had added a new variable dot with the value ’.’, then a new
constant is no longer needed, and it will not be added.

Variable usage
Synthesizers often require that the synthesized expression use
all variables available, a property called relevancy [16]. How-
ever, this requirement does not make sense for SNIPPY. The
example inputs include every variable in scope during the
assignment statement being synthesized, including inputs to
previous steps and intermediate results. Forcing the synthe-
sizer to use all these variables can lead to unintuitive and hard
to explain results, and will likely cause no result to be found.

However, removing the relevancy requirement entirely is also
problematic. Let us assume the user gives the variable out the
value -2. Several programs will evaluate to -2 on the inputs
from the examples, but the frst one found by the synthesizer is
-1 + -1, which is then post-processed into -2 and returned to
the user. PBE tools approach this scenario in one of two ways:
by requiring the user to add another example to show -2 is not
always the output, or by biasing the synthesis process heavily
against constants. This bias is sometimes so severe that, for
instance, if -2 is needed within a larger expression like s[-2]
(the second to last character of the string s), the synthesizer
would prefer a program where -2 is generated with as few
constants as possible, such as a.find(b) + a.find(b) when b
is not a substring of a. The result, s[a.find(b) + a.find(b)],
is both less general—it works for the current inputs, but may
not work for others—and makes little sense unless the user
understands this biased model.

SNIPPY does not bias its search against constants in general,
but applies a reduced relevancy requirement by not returning
a result program that does not use variables. For example, it
will construct the expression -2, and use it to construct larger
programs such as s[-2]. However, if the example output is -2,
the synthesizer will not return -2 as the target program, and
instead continue searching for a more suitable program.

STUDY METHODOLOGY
To evaluate SNIPPY, we conducted a within-subjects user
study comparing Python development using SNIPPY to devel-
oping with PROJECTION BOXES.

We focused our study on the following research questions:

RQ1: Does SSL-PBE make a difference in speed and correct-
ness compared to an unaided development process?

RQ2: How useful is SSL-PBE, as measured for example
by the percentage of the fnal code that is written by
SNIPPY vs by the user?

RQ3: Do users report positive experiences with SSL-PBE?
RQ4: How does SSL-PBE compare to searching the internet

for help?

We recruited 13 participants, 9 male, 4 female, with between
3 and 23 years of programming experience (average 8.7) for a
two-hour user study. We asked potential participants to self-
rate their Python experience on a scale of 1 (not familiar at
all) to 5 (extremely familiar), and selected participants with
experience between 2 and 4.

Tasks
Each participant solved 4 Python tasks from the competitive
programming website codewars.com. The tasks are:

A: abbreviate2: Convert full name to lowercase initials
separated by periods

B: count-duplicates3: return number of characters that
appear in a given list more than once

C: max-min4: compute min and max of a list
D: palindrome5: compute whether a string can be a palin-

drome if rotated by one ore more characters

We grouped the tasks into two sets that provided the same
level of diffculty: (A,B) and (C,D). A and C were easier tasks,
while B and D were harder tasks. We used two order of the
tasks: (A,B);(C,D) and (C,D);(A,B).

Control and Test Conditions
We use two tool confguration, one control and one test. The
control is called PROJECTION BOXES, which in this case
will refer to the live visualization without SNIPPY. The test
condition is SNIPPY. Since users had never seen PROJECTION
BOXES before, we randomized the order of the control/test
to prevent any advantage to SNIPPY users from being more
experienced with PROJECTION BOXES.

Since we have two orders of the control/test, and two orders
of the tasks, we have four groups:

1. SNIPPY: (A,B) ; PROJECTION BOXES: (C,D) (4 users)
2. PROJECTION BOXES: (C,D) ; SNIPPY: (A,B) (2 users)
3. SNIPPY: (C,D) ; PROJECTION BOXES: (A,B) (4 users)
4. PROJECTION BOXES: (A,B) ; SNIPPY: (C,D) (3 users)

Participants were randomly assigned into the above groups,
maintaining even group sizes, divided by level of expertise.
Participants were then asked to solve the frst two tasks with
the frst tool and the second two tasks with the second tool.

Study Session
The study was conducted remotely via video conferencing.
Because SNIPPY requires installing and setting up a runtime
environment, the study was also conducted via remote control.

Users were frst given a survey about their background as
programmers. Additionally, users were asked whether they
have experience with other synthesis tools, either by prior use
of academic tools or using smart code completion products.

We developed two instructional videos, one for PROJECTION
BOXES, and one for SNIPPY. The SNIPPY video assumes
PROJECTION BOXES had been introduced. Participants start-
ing with PROJECTION BOXES were shown the PROJECTION
BOXES video before using PROJECTION BOXES, then the
SNIPPY video before using SNIPPY. Participants starting with
SNIPPY were shown both the PROJECTION BOXES and the
SNIPPY video before starting with SNIPPY, and no additional
video before using PROJECTION BOXES. After the instruc-
tional video for a tool participants were given a demo task not

2https://www.codewars.com/kata/554b4ac871d6813a03000035, an
additional step asking for a lowercase abbreviation was added to
make the task more diffcult.
3https://www.codewars.com/kata/54bf1c2cd5b56cc47f0007a1
4https://www.codewars.com/kata/554b4ac871d6813a03000035
5https://www.codewars.com/kata/5a8fbe73373c2e904700008c

codewars.com
https://www.codewars.com/kata/554b4ac871d6813a03000035
https://www.codewars.com/kata/54bf1c2cd5b56cc47f0007a1
https://www.codewars.com/kata/554b4ac871d6813a03000035
https://www.codewars.com/kata/5a8fbe73373c2e904700008c

Figure 5. Percentage and number of correct answers for each task.

Easy Hard

abbreviate max-min
count-

duplicates palindrome

All avg
med

22%
21%

33%
139%

-7%
-18%

2%
-21%

Correct avg
med

21%
28%

13%
80%

-25%
-36%

-1%
-21%

Table 1. Changes in session times in SNIPPY compared to PROJECTION
BOXES. Negative percentage indicates a speedup.

related to the study tasks for a few minutes of guided explo-
ration of the tool. Users were also given an opportunity to ask
questions about the tool after the demo tasks.

Participants then performed the tasks. When using PROJEC-
TION BOXES, participants were given a web browser and free
internet access to search for code, whereas SNIPPY users
were only given SNIPPY. Participants were instructed to use
SNIPPY as much (or as little) as they wish. Tasks included
suggested examples to help users check their answers. Partic-
ipants determined when a task ended, either by saying they
completed it or by giving up on the current task and moving
to the next task. Each task was capped at 35 minutes.

After all four tasks, users were given a fnal survey asking
them to refect on ways SNIPPY helped them to write code.

RESULTS

Session times and correctness (RQ1)
Figure 5 shows the number and percentage of correct answers
to each task, determined via 10 unit tests for each task that
were run after the session ended.. Our study is too small to
show statistical signifcance, but we examine the tasks with
the most notable differences: abbreviate and palindrome.

In abbreviate, participants who did not have SNIPPY made
more mistakes. Most of the mistakes in abbreviate had to
do with using an incorrect separator between initials. Users
who used SNIPPY to synthesize the code that combines the
frst letters of the names did not make this mistake, as they
used the given expected output to generate the correct code.
Also, of the two participants who gave up on palindrome (P1,
and P12), P12 did not use the synthesize function feature of
SNIPPY for the entire 20 minute session, essentially reducing
the session to a PROJECTION BOXES session.

Table 1 shows the change in session times from PROJECTION
BOXES to SNIPPY, with PROJECTION BOXES as a baseline.
A negative percentage indicate a reduction in session time
(speedup), whereas a positive percentage indicates an increase
in session time (slowdown). The numbers are provided both

count-

abbreviate max-min duplicates palindrome

Useful calls avg 61% 36% 36% 27%
Total calls med 58% 25% 20% 20%

Synthesized avg 47% 66% 28% 18%
All code med 47% 65% 23% 15%

Table 2. Synthesis calls in relation to the fnal solution

for all sessions, and for all sessions where the participants
found correct solutions.

While our study is not large enough to provide statistically
signifcant results, broadly speaking, our preliminary num-
bers suggest a possible pattern based on how hard the task
is. Indeed, recall that abbreviate and max-min were eas-
ier tasks, while count-duplicates and palindrome were
harder tasks. In the two easier tasks, SNIPPY appears to make
the sessions longer, whereas for the two harder tasks, SNIPPY
appears to make the sessions shorter.

There are two factors that could explain this. First, for eas-
ier tasks, writing the code directly can be faster than using a
synthesizer, especially if using the synthesizer requires multi-
ple round trips (e.g., if the frst example is insuffcient, and a
second example is needed).

Our results echo those of previous studies such as Galenson
et al. [11], where using synthesis in a freeform manner more
than doubled the time to completion of the task. However,
we are encouraged by the fact that our slowdown is not as
severe, indicating the live programming aspect of SSL-PBE
helps mitigate some of the overhead of using the tool.

Usefulness of Synthesis (RQ2)
We measured how many synthesis calls were useful to the
programmer. We counted as useful any synthesis call where
a non-trivial part of the synthesized code was used in the
participant’s fnal program. As not useful we counted all other
calls, including calls where synthesis timed out. The results
are in the top part of Table 2.

In general, we see that a sizeable number of synthesis calls
are not useful. Still, for every task but palindrome at
least one participant had 100% useful synthesis calls. P8 in
count-duplicates and P12 in palindrome had no useful
calls in the course of solving their task.

Additionally, we measured how much of each user’s fnal pro-
gram originated from the synthesizer. To do this, we computed
the proportion of tokens (using Python’s own code tokenizer)
in the user’s answer that came from synthesis. We did not
count things not generated by SNIPPY, such as the assignment
into a variable or the return statement of the function, and in
the case the user renamed a variable in the synthesized code,
the variable name was counted as user code, while the rest
of the snippet was counted as synthesizer code. In short, we
measured the manual effort that was performed by the user
and how much was delegated to the synthesizer. The average
and median results are in the bottom part of Table 2.

Because SNIPPY does not generate things like the return state-
ment or assignments, and because palindrome required a

Average Median Dist.

SNIPPY helped me write my code 3.46 3

SNIPPY was easy to use 4.23 4

I would use SNIPPY again 3.54 4

SNIPPY would be useful beyond today’s tasks 3.69 4

I would like to have PROJECTION BOXES 4.54 5

I would like to have SNIPPY available 4.38 5
Table 3. Survey Results. All questions are on a likert scale where 1 is
“Disagree” and 5 is “Agree”.

loop to be manually written, 100% synthesized was not a pos-
sible result. Broadly speaking, programmers tackling the
harder tasks (count-duplicates and palindrome) wrote
more of the program manually. These tasks are harder to break
up into synthesis-ready chunks, and in some approaches to
the task, the synthesizer will no longer help. All tasks except
palindrome could be solved almost entirely by synthesis,
and the largest portion synthesized by one user was 83% in
count-duplicates (P3, 39 of 47 tokens). The way a prob-
lem is deconstructed for synthesis is crucial to how much of
it can be synthesized. Users whose breakdown of the task
meshed with SNIPPY could synthesize every step and write
almost no code, whereas users who did not come up with such
a breakdown were still able to synthesize code, but to a lesser
extent. Overall, we see that although a lot of synthesis calls
were not successful, calls that were successful provided users
with substantial parts of the solution.

SNIPPY and data-dependent loops
A very frequent cause of failed synthesis calls was an attempt
to synthesize statements inside loops that cause a data depen-
dency between the iterations, or a loop where a variable is
written to in one iteration, then used in the next, a simple
example of which is sum = sum + i. Dependent loops are a
known hard problem in program synthesis [34], and are notori-
ously hard to specify correctly even under the best conditions.
Attempting to synthesize these was a gap in the participants’
understanding of the synthesizer limitations (even for partici-
pants who were previously familiar with synthesis tools). We
discuss the implications of this gap in the next section.

User survey (RQ3)
Table 3 shows the results of our survey, including the average,
median and the distribution of scores. In the “Discussion”
section below we will discuss in more detail the factors that
affect the utility of SNIPPY, and explain these results. For now,
we do note that, even though the scores on utility are lower
than others, because SNIPPY can be invoked as needed, users
still overall said they would like to have SNIPPY available.

Comparison to Searching the Internet (RQ4)
One of the questions in our post-study questionnaire asked par-
ticipants to compare SNIPPY to searching the internet. Overall,
23.1% of participants said that they preferred SNIPPY to the
internet, 15.4% said they preferred the internet, and the re-
mainder said that it depends and explained the trade-offs.

P1, P10, and P12 stated that SNIPPY can work well even if one
does not have a clear picture of what they should search for
online. P1 also said that SNIPPY solutions are more concise.

One recurrent theme we observed is that searching the internet
and SNIPPY supplement each other, each having different
strengths. (In fact P7 said that they would frst try SNIPPY
and if that didn’t work they would search the internet.) For
the kinds of code snippets that SNIPPY can generate, SNIPPY
is better, for several reasons that were explicitly mentioned
by our participants. First, SNIPPY can fnd a solution quickly
without imposing the cognitive burden of switching to another
window or tool. Second, SNIPPY can fnd compact solutions.
Third SNIPPY correctly connects the generated snippet to the
surrounding code – in contrast solutions from the internet often
need to be adapted and correctly glued into the surrounding
context, a non-trivial and error prone task. Finally SNIPPY
can work well even when the programmer does not have a
clear picture of what to search for on the internet.

On the other hand, however, SNIPPY (as with any synthesis
tool) has limitations in what it can do, and this affects its utility
compared to searching the internet.

DISCUSSION

Usage of Small-Step Live Programming by Example
Through our study, we identify three predominant ways in
which SNIPPY helped programmers.

First, some participants used SNIPPY in precisely the way we
anticipated: decomposing the problems into smaller steps, then
editing the live data to make SNIPPY generate code snippets
for those smaller steps. In these cases, SNIPPY does not help
algorithmically, but instead provides help with individual steps
of a larger algorithm. The most successful uses of SNIPPY
were ones where the programmer came up with the high-level
strategy, and SNIPPY helped with the individual steps.

Second, some participants used SNIPPY “on the side”: they
would stop coding the main task they were working on, and
start writing code separately to get SNIPPY to generate a useful
snippet. For example, P1 used this approach to generate code
for rotating a string by a constant number—3 characters. Once
the code for rotating a string by 3 was generated, P1 took the
snippet, generalized it to an arbitrary rotation by k and placed
it inside a loop. This interruption in the fow of programming
leads to a less fuid process, but still uses SNIPPY effectively.

Third, some participant used SNIPPY to recall details about
Python syntax or Python libraries they had forgotten. In this
situation, the programmer might know how to do something,
but forgot (or possibly is not fully familiar with) the details
of expressing it in Python. Examples of such easily forgotten
details, especially for those with less Python experience (but
even for programmers with a lot of Python experience) include:
the order of parameters to certain methods, like split; the
exact syntax of dictionary comprehension; the exact syntax
of list/dictionary comprehension with an embedded flter; the
name of library functions, e.g., for converting characters to
lower case, for returning the keys and values of a dictionary,
or for returning the elements and indices of a list.

Understanding Synthesized Code
When a synthesizer generates code, there is a question of how
well the programmer understands the code. In our study, pro-
grammers checked that the code appeared reasonable but did
not try to understand the details. In some cases, participants
remarked on the synthesized code being simpler than they
would have written. In other cases, participants explicitly said
that the code worked, but they did not fully understand it.

One may be concerned about correctness when programmers
use code that they do not fully understand, but in our study we
observed that this did not drive programmers to an incorrect
solution. We also observed users sometimes take code snippets
they do not fully understand from the internet in our control
setting, and are not the frst to document this [6].

However, we observed a much more interesting problem when
programmers do not understand the synthesized code: it leads
to the mindset that the synthesizer is all-or-nothing: either
the synthesizer eventually generates code that works, or if not,
then the programmer just gives up on the synthesizer altogether.
Unfortunately, this can prevent the programmer from using an
almost-correct solution generated by the synthesizer.

This happened to P2 who used SNIPPY in palindrome to
generate an almost-correct solution. Given the setup that the
programmer used, the synthesized code only worked for lists
of size 4. Had the programmer generalized 4 to an expression
for the list’s length, the problem would have been solved.
Instead they tried unsuccessfully to generalize the examples
and re-synthesize, and eventually gave up on the problem.

More generally, this leads us to the following takeaway:

Because programmers do not try to understand the code
generated by the synthesizer, they unnecessarily shy away
from trying to use partial results from the synthesizer.

This in turn points to a possible direction for future research,
namely on understandability and usability of partial results in
synthesizer-generated code (something that has already started
being explored, for example in Wrex [9] and Bester [35]).

Mental Model of the Synthesizer
We have noticed that the mental model that the programmer
has of the synthesizer is very important. We start by framing
our discussion in terms of the well-known gulfs of evaluation
and execution. The gulf of evaluation captures how well a user
can understand the internal state of the system. The gulf of
execution captures how well a user can discover how to make
the system take steps toward an ulterior goal. In the setting of
programming, the gulf of evaluation relates to understanding
the program state and its result; the gulf of execution relates
to understanding what kinds of statements should be written
next to fnish a task. E.g., at a command line prompt, showing
the current directory and the computer name eases the gulf
of evaluation (exposing internal state); making commands at
the prompt discoverable via auto-complete or command-line
searches may ease the gulf of execution (making it easier to
choose the next step toward a goal).

PROJECTION BOXES help with the gulf of evaluation, since
they make the internal state of the program visible at all times.
However, they do not help explicitly with the gulf of execution,
since they do not help directly with writing the code.

SNIPPY provides this missing aspect of PROJECTION BOXES,
easing the gulf of execution with explicit help discovering the
next statement toward a broader end goal. However, this over-
simplifcation misses an important subtlety. While SNIPPY
does ease the gulf of execution in some ways, it introduces
a different kind of burden that also relates to the gulf of exe-
cution: the programmer must now pick between SNIPPY and
one of three other approaches: (1) writing the code by hand,
(2) searching the internet, or (3) manually decomposing the
problem into smaller pieces to try with SNIPPY.

So, in essence, we have shifted the gulf of execution from
one kind of gulf to another: from fguring out what statement
to write next, to fguring out if SNIPPY should be used for
the next statement. This new gulf of execution is particularly
interesting because for programmers to make the choice be-
tween SNIPPY and other approaches, we have observed that
they must have an accurate mental model of the synthesizer’s
abilities. If a programmer broadly understands (through trial
and error) what kinds of tasks the synthesizer can do, they will
know when to invoke the synthesizer and when to try some-
thing else. However, if the programmer has a poor mental
model of the synthesizer’s ability (e.g., one that overestimates
the synthesizer’s ability), then the programmer might waste
time and energy trying to get the synthesizer to do something
that it simply cannot. This leads to frustration, making it less
likely that the synthesizer will be used the next time around.
Furthermore, if the programmer underestimates the synthe-
sizer’s ability, they will under-utilize the tool.

We introduce the term user-synthesizer gap to refer to
this gap between the user’s mental model of the synthe-
sizer’s abilities and the actual abilities of the synthesizer.

We are not the frst to notice this kind of effect. Lau [24]
explored the related topic of a user’s trust of the synthesizer,
concluding that the adoption of Programming by Demonstra-
tion tools is held back by tool behaviors that undermine that
trust. Gero et al. [12] explored mental models of AI agents in
an interactive game, strengthening the conclusion that mistrust-
ing the system is detrimental to success of the user, but also
fnding that: (1) users with a generally good understanding of
AI systems developed a better mental model of the AI agent
and (2) people tended to overestimate the AI’s abilities.

The way the user-synthesizer gap manifested itself in our study
shows that the overestimation of the AI system’s capabilities
documented by Gero et al. also occurs for synthesizers, but
that it may involve underestimating the synthesizer’s ability
instead. Because state-of-the-art general-purpose synthesizers
still cannot generate all the necessary code in a real setting,
the only way a synthesizer can help a programmer is on sub-
problems to a larger task. In this situation, the user-synthesizer
gap will inevitably come into play. This is less pronounced
in domain-specifc tools, as the limits of the domain act as an
accurate mental and actual model for the synthesizer’s limits.

We observed three properties about this gap. First, it is a much
bigger problem if the user over-estimates the synthesizer’s
ability than underestimates it. Second, the larger the gap is, the
more diffcult it becomes for the programmer to make choices
about how to incorporate the synthesizer into programming
tasks. Third, this gap is self-correcting in some ways, in that if
the gap is large, programmers eventually understand this, and
adjust their mental model to reduce the gap. Consequently,
as the programmer learns more about the synthesizer through
trial and error, the gap can decrease over time, but this is a non-
trivial learning curve that takes time, and can be a signifcant
impediment to the adoption of synthesizers.

All the above observations lead us to believe that reducing the
user-synthesizer gap represents an impactful future research
arc that has the potential to further unlock the potential of
state-of-the-art synthesis techniques.

LIMITATIONS
While the results of the study are promising, our study has
certain limitations that remain to be addressed in future work.

Our study compares SSL-PBE with live programming aug-
mented with searching the internet in a browser. Further stud-
ies would be needed to compare SSL-PBE to other interaction
models, such as web searches or knowledge bases embedded
in the IDE [28, 10], big-step synthesis tools in and out of the
IDE [21], and smart code completion [17].

There are also several threats to the validity of our results. Our
survey was conducted in the presence of one of the authors,
which could lead to a social desirability bias. Additionally, the
phrasing of questions was not neutral (e.g. “SNIPPY helped
me write my code” instead of “How helpful was SNIPPY in
writing your code”).

There may also be a bias in our fndings on users’ understand-
ing of the synthesized code. Our tasks each included one
or more examples participants could input into the live pro-
gramming environment, which could limit users’ view of the
code to those inputs and discourage them from examining the
synthesized code further.

Finally, the small sample size and short length of tasks could
be a threat to the internal validity of the study. Individual
differences in coding speed could affect the conclusions we
drew from the length of the programming sessions.

CONCLUSION
We introduced a new paradigm called Small-Step Live Pro-
gramming by Example and discussed its implementation in
SNIPPY. Through a within-subjects study we demonstrated
that this paradigm is easy to use, and is most effective in
non-trivial tasks. We also found that almost all participants
preferred SNIPPY over searching the internet in some cases.
Furthermore, our study showed that most users did not at-
tempt to understand the code deeply, which resulted in an
all-or-nothing approach to using SNIPPY’s output. Finally, we
identifed the “user-synthesizer gap”, which describes the gap
between the user’s mental model of the synthesizer’s capabili-
ties and its actual capabilities. We believe that reducing this
gap represents an important direction for future research.

ACKNOWLEDGMENTS
This work was supported in part by NSF grants 1943623 and
1911149.

REFERENCES
[1] 2019. Alfe. https://alfie.prodo.ai/. (2019). Accessed:

2019-09-01.

[2] 2019. LightTable. http://lighttable.com/. (2019).
Accessed: 2019-09-01.

[3] Aws Albarghouthi, Sumit Gulwani, and Zachary
Kincaid. 2013. Recursive program synthesis. In
International Conference on Computer Aided
Verifcation. Springer, 934–950.

[4] Rajeev Alur, Dana Fisman, Rishabh Singh, and
Armando Solar-Lezama. 2017. Sygus-comp 2017:
Results and analysis. arXiv preprint arXiv:1711.11438
(2017).

[5] Benjamin Biegel, Benedikt Lesch, and Stephan Diehl.
2015. Live object exploration: Observing and
manipulating behavior and state of Java objects. In 2015
IEEE International Conference on Software
Maintenance and Evolution (ICSME). 581–585. DOI:
http://dx.doi.org/10.1109/ICSM.2015.7332518

[6] Joel Brandt, Philip J. Guo, Joel Lewenstein, Mira
Dontcheva, and Scott R. Klemmer. 2009. Two Studies of
Opportunistic Programming: Interleaving Web Foraging,
Learning, and Writing Code. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems (CHI ’09). Association for Computing
Machinery, New York, NY, USA, 1589–1598. DOI:
http://dx.doi.org/10.1145/1518701.1518944

[7] Sarah E Chasins, Maria Mueller, and Rastislav Bodik.
2018. Rousillon: Scraping Distributed Hierarchical Web
Data. In Proceedings of the 31st Annual ACM
Symposium on User Interface Software and Technology.
963–975.

[8] Ravi Chugh, Brian Hempel, Mitchell Spradlin, and
Jacob Albers. 2016. Programmatic and Direct
Manipulation, Together at Last. In Proceedings of the
37th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI ’16).
Association for Computing Machinery, New York, NY,
USA, 341–354. DOI:
http://dx.doi.org/10.1145/2908080.2908103

[9] Ian Drosos, Titus Barik, Philip J. Guo, Robert DeLine,
and Sumit Gulwani. 2020. Wrex: A Unifed
Programming-by-Example Interaction for Synthesizing
Readable Code for Data Scientists. In Proceedings of the
2020 CHI Conference on Human Factors in Computing
Systems (CHI ’20). Association for Computing
Machinery, New York, NY, USA, 1–12. DOI:
http://dx.doi.org/10.1145/3313831.3376442

[10] Ethan Fast, Daniel Steffee, Lucy Wang, Joel R. Brandt,
and Michael S. Bernstein. 2014. Emergent, Crowd-Scale
Programming Practice in the IDE. In Proceedings of the

https://alfie.prodo.ai/
http://lighttable.com/
http://dx.doi.org/10.1109/ICSM.2015.7332518
http://dx.doi.org/10.1145/1518701.1518944
http://dx.doi.org/10.1145/2908080.2908103
http://dx.doi.org/10.1145/3313831.3376442

SIGCHI Conference on Human Factors in Computing
Systems (CHI ’14). Association for Computing
Machinery, New York, NY, USA, 2491–2500. DOI:
http://dx.doi.org/10.1145/2556288.2556998

[11] Joel Galenson, Philip Reames, Rastislav Bodik, Björn
Hartmann, and Koushik Sen. 2014. CodeHint: Dynamic
and Interactive Synthesis of Code Snippets. In
Proceedings of the 36th International Conference on
Software Engineering (ICSE 2014). Association for
Computing Machinery, New York, NY, USA, 653–663.
DOI:http://dx.doi.org/10.1145/2568225.2568250

[12] Katy Ilonka Gero, Zahra Ashktorab, Casey Dugan, Qian
Pan, James Johnson, Werner Geyer, Maria Ruiz, Sarah
Miller, David R Millen, Murray Campbell, and others.
2020. Mental Models of AI Agents in a Cooperative
Game Setting. In Proceedings of the 2020 CHI
Conference on Human Factors in Computing Systems.
1–12.

[13] Sumit Gulwani. 2011. Automating string processing in
spreadsheets using input-output examples. ACM Sigplan
Notices 46, 1 (2011), 317–330.

[14] Sumit Gulwani, Mikaël Mayer, Filip Niksic, and Ruzica
Piskac. 2015. StriSynth: synthesis for live programming.
In 2015 IEEE/ACM 37th IEEE International Conference
on Software Engineering, Vol. 2. IEEE, 701–704.

[15] Philip J. Guo. 2013. Online Python Tutor: Embeddable
Web-based Program Visualization for Cs Education. In
Proceeding of the 44th ACM Technical Symposium on
Computer Science Education (SIGCSE ’13). ACM, New
York, NY, USA, 579–584. DOI:
http://dx.doi.org/10.1145/2445196.2445368

[16] Zheng Guo, Michael James, David Justo, Jiaxiao Zhou,
Ziteng Wang, Ranjit Jhala, and Nadia Polikarpova. 2019.
Program synthesis by type-guided abstraction
refnement. Proceedings of the ACM on Programming
Languages 4, POPL (2019), 1–28.

[17] Tihomir Gvero, Viktor Kuncak, Ivan Kuraj, and Ruzica
Piskac. 2013. Complete completion using types and
weights. In ACM SIGPLAN Notices, Vol. 48. ACM,
27–38.

[18] Christopher Michael Hancock. 2003. Real-time
Programming and the Big Ideas of Computational
Literacy. Ph.D. Dissertation. Cambridge, MA, USA.
AAI0805688.

[19] Brian Hempel, Justin Lubin, and Ravi Chugh. 2019.
Sketch-n-Sketch: Output-Directed Programming for
SVG. In Proceedings of the 32nd Annual ACM
Symposium on User Interface Software and Technology.
281–292.

[20] Qinheping Hu, Roopsha Samanta, Rishabh Singh, and
Loris D’Antoni. 2019. Direct Manipulation for
Imperative Programs. In International Static Analysis
Symposium. Springer, 347–367.

[21] Jinru Hua and Sarfraz Khurshid. 2017. EdSketch:
Execution-driven sketching for Java. In Proceedings of
the 24th ACM SIGSOFT International SPIN Symposium
on Model Checking of Software. ACM, 162–171.

[22] Hyeonsu Kang and Philip J. Guo. 2017. Omnicode: A
Novice-Oriented Live Programming Environment with
Always-On Run-Time Value Visualizations. In
Proceedings of the 30th Annual ACM Symposium on
User Interface Software and Technology (UIST ’17).
ACM, New York, NY, USA, 737–745. DOI:
http://dx.doi.org/10.1145/3126594.3126632

[23] Jan-Peter Krämer, Joachim Kurz, Thorsten Karrer, and
Jan O. Borchers. 2014. How live coding affects
developers’ coding behavior. 2014 IEEE Symposium on
Visual Languages and Human-Centric Computing
(VL/HCC) (2014), 5–8.

[24] Tessa Lau and others. 2008. Why PBD systems fail:
Lessons learned for usable AI. In CHI 2008 Workshop
on Usable AI.

[25] Vu Le and Sumit Gulwani. 2014. FlashExtract: a
framework for data extraction by examples. In
Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation.
542–553.

[26] Xuan-Bach D Le, Duc-Hiep Chu, David Lo, Claire
Le Goues, and Willem Visser. 2017. JFIX:
semantics-based repair of Java programs via symbolic
PathFinder. In Proceedings of the 26th ACM SIGSOFT
International Symposium on Software Testing and
Analysis. ACM, 376–379.

[27] Sorin Lerner. 2020. Projection Boxes: On-the-Fly
Reconfgurable Visualization for Live Programming. In
Proceedings of the 2020 CHI Conference on Human
Factors in Computing Systems (CHI ’20). Association
for Computing Machinery, New York, NY, USA, 1–7.
https://doi.org/10.1145/3313831.3376494

[28] Hongwei Li, Zhao Xuejiao, Zhenchang Xing, Lingfeng
Bao, Xin Peng, Dongjing Gao, and Wenyun Zhao. 2015.
AmAssist: In-IDE ambient search of online
programming resources. 2015 IEEE 22nd International
Conference on Software Analysis, Evolution, and
Reengineering, SANER 2015 - Proceedings (04 2015),
390–398. DOI:
http://dx.doi.org/10.1109/SANER.2015.7081849

[29] Fan Long and Martin Rinard. 2015. Staged program
repair with condition synthesis. In Proceedings of the
2015 10th Joint Meeting on Foundations of Software
Engineering. ACM, 166–178.

[30] Fan Long and Martin Rinard. 2016. Automatic patch
generation by learning correct code. ACM SIGPLAN
Notices 51, 1 (2016), 298–312.

[31] Mikaël Mayer, Viktor Kuncak, and Ravi Chugh. 2018.
Bidirectional Evaluation with Direct Manipulation. Proc.
ACM Program. Lang. 2, OOPSLA, Article Article 127

http://dx.doi.org/10.1145/2556288.2556998
http://dx.doi.org/10.1145/2568225.2568250
http://dx.doi.org/10.1145/2445196.2445368
http://dx.doi.org/10.1145/3126594.3126632
https://doi.org/10.1145/3313831.3376494
http://dx.doi.org/10.1109/SANER.2015.7081849

(Oct. 2018), 28 pages. DOI:
http://dx.doi.org/10.1145/3276497

[32] Cyrus Omar, Ian Voysey, Ravi Chugh, and Matthew A.
Hammer. 2019. Live Functional Programming with
Typed Holes. Proc. ACM Program. Lang. 3, POPL,
Article 14 (Jan. 2019), 32 pages. DOI:
http://dx.doi.org/10.1145/3290327

[33] Antti Oulasvirta and Pertti Saariluoma. 2006. Surviving
task interruptions: Investigating the implications of
long-term working memory theory. International
Journal of Human-Computer Studies 64, 10 (2006),
941–961.

[34] Hila Peleg, Roi Gabay, Shachar Itzhaky, and Eran
Yahav. 2020. Programming with a Read-Eval-Synth
Loop. (2020). Manuscript submitted for publication.

[35] Hila Peleg and Nadia Polikarpova. 2020. Perfect is the
Enemy of Good: Best-Effort Program Synthesis. In 34th
European Conference on Object-Oriented Programming,
ECOOP 2020.

[36] Hila Peleg, Sharon Shoham, and Eran Yahav. 2018.
Programming not only by example. In Proceedings of
the 40th International Conference on Software
Engineering. ACM, 1114–1124.

[37] David Rauch, Patrick Rein, Stefan Ramson, Jens Lincke,
and Robert Hirschfeld. 2019. Babylonian-style
Programming: Design and Implementation of an
Integration of Live Examples Into General-purpose
Source Code. The Art, Science, and Engineering of
Programming 3, 3 (2019).

[38] Mark Santolucito, William T Hallahan, and Ruzica
Piskac. 2019. Live Programming By Example. In
Extended Abstracts of the 2019 CHI Conference on
Human Factors in Computing Systems. 1–4.

[39] Christopher Schuster and Cormac Flanagan. 2016. Live
programming by example: using direct manipulation for
live program synthesis. In LIVE Workshop.

[40] Ben Shneiderman. 1983. Direct Manipulation: A Step
Beyond Programming Languages. Computer 16, 8
(1983), 57–69.

[41] Calvin Smith and Aws Albarghouthi. 2016. MapReduce
program synthesis. In Proceedings of the 37th ACM
SIGPLAN Conference on Programming Language
Design and Implementation. ACM, 326–340.

[42] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik,
Sanjit Seshia, and Vijay Saraswat. 2006. Combinatorial
sketching for fnite programs. In Proceedings of the 12th
international conference on Architectural support for
programming languages and operating systems.
404–415.

[43] S. L. Tanimoto. 2013. A perspective on the evolution of
live programming. In 2013 1st International Workshop
on Live Programming (LIVE). 31–34. DOI:
http://dx.doi.org/10.1109/LIVE.2013.6617346

[44] Abhishek Udupa, Arun Raghavan, Jyotirmoy V
Deshmukh, Sela Mador-Haim, Milo MK Martin, and
Rajeev Alur. 2013. TRANSIT: specifying protocols with
concolic snippets. ACM SIGPLAN Notices 48, 6 (2013),
287–296.

[45] Priyan Vaithilingam and Philip J Guo. 2019. Bespoke:
Interactively Synthesizing Custom GUIs from
Command-Line Applications By Demonstration. In
Proceedings of the 32nd Annual ACM Symposium on
User Interface Software and Technology. 563–576.

[46] Sahil Verma and Subhajit Roy. 2017. Synergistic
Debug-Repair of Heap Manipulations. In Proceedings of
the 2017 11th Joint Meeting on Foundations of Software
Engineering (ESEC/FSE 2017). Association for
Computing Machinery, New York, NY, USA, 163–173.

[47] Bret Victor. 2012. Learnable Programming. (2012).
http://worrydream.com/LearnableProgramming/

[48] E. M. Wilcox, J. W. Atwood, M. M. Burnett, J. J. Cadiz,
and C. R. Cook. 1997. Does Continuous Visual
Feedback Aid Debugging in Direct-manipulation
Programming Systems?. In Proceedings of the ACM
SIGCHI Conference on Human Factors in Computing
Systems (CHI ’97). ACM, New York, NY, USA,
258–265. DOI:
http://dx.doi.org/10.1145/258549.258721

[49] Glynn Winskel. 1993. The Formal Semantics of
Programming Languages: An Introduction. MIT Press,
Cambridge, MA, USA.

[50] Y. Xiong, J. Wang, R. Yan, J. Zhang, S. Han, G. Huang,
and L. Zhang. 2017. Precise Condition Synthesis for
Program Repair. In 2017 IEEE/ACM 39th International
Conference on Software Engineering (ICSE), Vol. 00.
416–426. DOI:http://dx.doi.org/10.1109/ICSE.2017.45

[51] Navid Yaghmazadeh, Xinyu Wang, and Isil Dillig. 2018.
Automated Migration of Hierarchical Data to Relational
Tables Using Programming-by-example. Proc. VLDB
Endow. 11, 5 (Jan. 2018), 580–593. DOI:
http://dx.doi.org/10.1145/3187009.3177735

http://dx.doi.org/10.1145/3276497
http://dx.doi.org/10.1145/3290327
http://dx.doi.org/10.1109/LIVE.2013.6617346
http://worrydream.com/LearnableProgramming/
http://dx.doi.org/10.1145/258549.258721
http://dx.doi.org/10.1109/ICSE.2017.45
http://dx.doi.org/10.1145/3187009.3177735

	Introduction
	Motivating example
	Opportunistic programming
	Small-Step Live Programming by Example

	Related work
	Live programming
	Big-step program synthesis and repair
	Small-Step Program Synthesis

	User Interface
	Synthesizer implementation
	Python as a typed language
	List and Dictionary Comprehensions
	Discovering string literals
	Variable usage

	Study Methodology
	Tasks
	Control and Test Conditions
	Study Session

	Results
	Session times and correctness (RQ1)
	Usefulness of Synthesis (RQ2)
	User survey (RQ3)
	Comparison to Searching the Internet (RQ4)

	Discussion
	Usage of Small-Step Live Programming by Example
	Understanding Synthesized Code
	Mental Model of the Synthesizer

	Limitations
	Conclusion
	Acknowledgments
	References

