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ABSTRACT 
Live programming is a paradigm in which the programming 
environment continually displays runtime values. Program 
synthesis is a technique that can generate programs or program 
snippets from examples. Previous works that combine the two 
have taken a holistic approach to the way examples describe 
the behavior of functions and programs. This paper presents a 
new programming paradigm called Small-Step Live Program-
ming by Example that lets the user apply Programming by 
Example locally. When using Small-Step Live Programming 
by Example, programmers can change the runtime values dis-
played by the live visualization to generate local program 
snippets. We implemented this new paradigm in a tool called 
SNIPPY, and performed a user study on 13 programmers. Our 
study fnds that Small-Step Live Programming by Example 
with SNIPPY helps users solve harder problems faster, and 
that for certain types of queries, users prefer it to searching 
the web. Additionally, we identify the user-synthesizer gap, 
in which users’ mental models of the tool do not match its 
ability, and needs to be taken into account in the design of 
future synthesis tools. 

Author Keywords 
Live Programming, Program Synthesis 

CCS Concepts 
•Human-centered computing → Graphical user inter-
faces; •Software and its engineering → Automatic pro-
gramming; 

INTRODUCTION 
Live programming is a paradigm where the programming 
environment continually displays runtime values. While live 
programming provides immediate feedback about the current 
state of execution, it does not explicitly help the programmer to 
discover the next line of code they need to write to accomplish 
their goal. 
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On the other hand, program synthesis is a technique that helps 
programmers by generating code automatically. There are 
many approaches to program synthesis, but in this paper we fo-
cus on a class of techniques called Programming-by-Example 
(PBE), where the programmer provides input-output exam-
ples, and the synthesizer produces candidate programs that 
satisfy these examples. While program synthesis can generate 
code that accomplishes a given goal, traditional synthesizers 
are stand-alone and not integrated tightly into the develop-
ment work-fow, which makes it hard for the programmer to 
formulate the goal for the synthesizer to solve. 

As such, live programming and PBE are perfectly suited for 
each other: the live programming environment provides all 
the values needed for the programmer to easily provide exam-
ples without a signifcant break in workfow; and synthesis 
from examples helps address a limitation of live programming, 
which is that it does not explicitly generate statements. 

Because of this symbiotic relationship, there has been prior 
work on combining Live Programming with PBE, sometimes 
called Live Programming by Example [39, 38] or synthesis 
from Direct Manipulation Interfaces [8, 31, 19]. However, 
broadly speaking, examples in this prior work describe behav-
ior holistically, meaning that each example impacts either the 
entire program, or a large part of the program (e.g., an entire 
function). In the literature on program semantics, this kind of 
specifcation is usually referred to as a big-step semantics [49]. 

In this paper, we describe a different approach to Live Pro-
gramming by Example, which we call Small-Step Live Pro-
gramming by Example (SSL-PBE). In contrast to prior work, 
SSL-PBE allows the programmer to specify examples in a 
live programming environment, but only for a single missing 
statement. Synthesis in SSL-PBE starts in a live programming 
environment where program state is displayed after each state-
ment. While in traditional live programming the displayed 
state is read-only, in SSL-PBE the runtime values can be modi-
fed. When the programmer edits values in the state, a program 
synthesizer runs to generate a local program snippet that sat-
isfes the new data. SSL-PBE is unique in that it enables a 
new programming paradigm where the programmer “leads” 
the generation of the program with data. 

To understand the viability of this new paradigm, we imple-
mented SSL-PBE for the Python programming language, in 
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a tool named SNIPPY. SNIPPY uses the live programming 
environment of Projection Boxes [27] and a custom-made enu-
merative program synthesizer to generate Python statements. 

Through a user study, we demonstrate that SSL-PBE is easy to 
use, and has an impact on task time and correctness on more 
diffcult tasks. Our study also shows that the synthesizer can 
generate between 18% to 66% of the code, thus demonstrating 
that the synthesizer and the human can work together to form 
a complete solution. Finally, our user study also shows that al-
most all our participants preferred SNIPPY over searching the 
internet in some cases, the main reasons being that compared 
to the internet searches SNIPPY incurs a lower cognitive bur-
den, automatically connects the snippet with the surrounding 
code, and provides a more compact solution. 

The main contributions of this paper are: 

• We present a novel paradigm called Small-Step Live Pro-
gramming by Example, in which programmers can modify 
live data to generate code snippets. 

• We present an implementation of this paradigm in a tool 
called SNIPPY. 

• A user study of SNIPPY on 13 programmers found that 
SNIPPY complements web searches in bridging certain 
types of knowledge gaps, and that SNIPPY helped users 
solve harder problems 

• We identify the user-synthesizer gap, where a mismatch 
between the user’s mental model of the synthesizer and 
the abilities of the synthesizer hinders the user’s ability to 
use the synthesizer effectively. We believe that the user-
synthesizer gap needs to be addressed as synthesis tools 
begin to target programmers rather than end-users. 

MOTIVATING EXAMPLE 
A programmer named Kayla is processing a text fle using 
Python. One part of the processing involves reducing a name 
(e.g., “Augusta Ada King”) to a non-standard form of initials1 

(e.g., “A.A.K”). Kayla has a lot of programming experience, 
but is only a casual Python user, which means Kayla does not 
immediately know how to achieve this task in Python. Being 
an experienced programmer, Kayla breaks down the task into 
two components: getting the frst letter of each word, and 
reconnecting them in the desired format. 

Opportunistic programming 
Kayla turns to searching for the answer using a search engine. 
Unsure of the precise string terminology of Python, but used 
to relying on search engines, she tries the natural language 
search, “Python frst letter of every word”. The frst result is a 
link to the Stack Overfow question “How can I get the frst 
letter of each word in a string?” which has no accepted answer 
but upon further reading has code which looks suitable in 
the comments discussing the question. Copying the code and 
modifying the variable names, Kayla now has the following: 
letters = [w[0] for w in s.split(' ')] 

1The task is taken from this competitive programming exercise: 
https://www.codewars.com/kata/57eadb7ecd143f4c9c0000a3 

This code returns a list of initials. Now all that remains is 
to format it. Since the required formatting is trickier than 
standard initials punctuation, Kayla knows that a loop is not 
the easiest way to go in this case. Kayla recalls that Python 
has a join method to convert arrays to strings, so she tries: 
letters = [w[0] for w in s.split(' ')] 
res = letters.join('.') 

However, this code produces the runtime error AttributeError: 
’list’ object has no attribute ’join’, which Kayla now 
looks up online as well. After some digging, Kayla realizes 
that join is a method on strings, so the correct code is in fact: 
letters = [w[0] for w in string.split(' ')] 
res = '.'.join(letters) 

Small-Step Live Programming by Example 
Let us consider the same task again, but instead Kayla will 
use our proposed approach, Small-Step Live Programming by 
Example, as reifed in our SNIPPY tool. Kayla starts in a live 
programming environment, in this case Projection Boxes [27], 
as seen in Figure 1(a). The visualization shows at each line 
a projection box with the values of all variables at that line. 
However, while in a traditional live programming environment 
the visualization is read-only, in our approach the values of 
variables in the visualization can be edited to show the pro-
grammer’s intent. Thus, Kayla edits the value of letters in 
the projection box to enter the desired value, as shown in Fig-
ure 1(b). By this, Kayla is stating that she wants SNIPPY to 
generate a code snippet that will produce ['A','A','K'] in the 
letters variable when s is 'Augusta Ada King'. In the synthesis 
literature this is called an input-output example. If the state-
ment Kayla wanted to generate was executed multiple times 
(i.e., it is inside a loop or in a function that is called multiple 
times), the projection box would have one line per execution 
and Kayla would be able to provide one or more input-output 
examples, one for each execution of the statement. 

Once Kayla has provided some input-output examples by 
changing the live visualization, these examples are sent to 
a Programming by Example (PBE) synthesis engine, while the 
user is told that the synthesizer is working in the background 
Figure 1(c). In previous PBE tools aimed at programmers, 
providing examples is often a weak point of the interaction 
model, sometimes requiring a break in the workfow that could 
be as severe as switching to a different tool and editing its con-
fguration fles. Through direct manipulation of live data, our 
approach makes the specifcation process seamless. Further-
more, focusing the user’s attention on the value assigned to 
a single variable turns the synthesizer into a helper utility 
in a larger task, which harnesses the still-limited power of 
synthesis to solve specifc sub-tasks for the user. 

Within seconds, the SNIPPY synthesizer fnds a solution and 
adds the generated code snippet, as shown in Figure 1(d). 

Next, Kayla creates a new variable, called res, as shown in Fig-
ure 1(e) – for brevity of the fgure, at this point we confgured 
Projection Boxes to not display the variable s anymore. Kayla 
changes the projection box value of res to be 'A.A.K', as shown 
in Figure 1(f). This provides the synthesizer with an input-
output example stating the output in res should be 'A.A.K' 

https://www.codewars.com/kata/57eadb7ecd143f4c9c0000a3


Figure 1. Writing code using SNIPPY: (a)-(d) generates the frst statement and (e)-(h) generates the second statement. 

when s is 'Augusta Ada King' and letters is ['A', 'A', 'K']. 
Within a few seconds, the SNIPPY synthesizer generates a 
statement, as shown in Figure 1(g)-(h). To fnish the code, 
Kayla changes the return statement to return the res variable. 

In summary, this example showed how Kayla was able to fnish 
writing the code, without leaving the IDE, without searching 
online, and without bearing the cognitive load of thinking 
about the details of list comprehension, split or join. 

RELATED WORK 

Live programming 
Live programming is a paradigm that provides immediate 
visualizations of a program’s behavior. This research area 
dates back to the seminal work of Hancock [18]. Live pro-
gramming environments have been developed for Python [15, 
22], Java [5], Javascript [37, 1], Lisp [2] and ML-like lan-
guages [32]. There is also work categorizing different kinds 
of liveness [43, 47], and studies exploring the benefts of 
live programming [48, 23]. Traditionally, live programming 
only provides feedback to the programmer, and not the abil-
ity to edit the output or synthesize new pieces of code. Our 
work distinguishes itself from traditional live programming by 
contributing a new paradigm where changing data in the visu-
alization can produce small code snippets for the programmer. 

Big-step program synthesis and repair 
Program synthesis takes a specifcation of behavior and returns 
a program satisfying the specifcation. Automatic program 
repair (APR) takes a program and a specifcation, and mini-
mally changes the program to satisfy the specifcation. Both 
commonly take specifcations that describe the full program, 
or as previously desribed, “big-step” specifcations. Most syn-
thesis and APR literature assumes a user that provides the 
specifcations, but does not focus on the experience of the user 
when creating the specifcations or processing the results. 

Programming by Example 
Programming by Example (PBE) is a feld of program synthe-
sis where behavior specifcations are provided as input-output 
pairs. This approach has been applied to string transformations 
of Excel data [13] and fle renaming [14], data extraction [25], 
and transforming tabular data [51], all synthesis solutions for 
end-users. In APR and synthesis aimed at developers, exam-
ples can also take the form of unit tests [29, 30, 50, 26]. 

Since examples are partial specifcations, often resulting in too-
specifc programs that require more examples to generalize, 
[36] question their suffciency as a specifcation tool. Entering 
examples is also error-prone, a problem tackled by [35]. 

Live programming by example 
Two approaches for synthesis for developers are named “Live 
Programming by Example”. The frst [39] allows users to 
edit HTML output causing changes to its rendering JavaScript 
code. The second [38] consists of two connected fles, a code 
fle with functions and an examples fle with unit tests for the 
functions. Unit tests are executed for live programming data, 
and modifying a unit test will attempt to synthesize a new func-
tion where the tests pass. Both approaches shift the audience 
of PBE from non-programmer end-users to programmers who 
interact with the synthesized code, but both still use examples 
as a holistic mode of specifcation. In SNIPPY, the separation 
between code and data is not as severe: live values are adjacent 
to the code, not in another fle. Additionally, SNIPPY uses 
examples as small-steps on intermediate values, rather than 
just the output of the entire execution, giving users access to 
localized synthesis from local examples. 

Domain specifc synthesis tools 
Several recent projects focus on domain-specifc example-
driven tools for non-programmers: Rousillon [7] generates 
web scrapers, Bespoke [45] GUI applications, and Wrex [9] 
Python wrangling code in Jupyter Notebooks. SNIPPY targets 
general programming, rather than one domain-specifc task. 



As such, our intended users are programmers, not data scien-
tists or power-users, and we augment a different workfow. 

Direct manipulation interfaces as specifcation 
Direct manipulation user interfaces [40] are visualizations of 
the system state that can be changed, and are prevalent as 
editors of graphical representations. Sketch-n-Sketch [8, 31, 
19] is a direct-manipulation editor for programmable graphical 
formats such as SVG, HTML, and LaTeX, where direct manip-
ulation changes to the visual output become repair operations 
on the generating code and inputs. [19] takes this further by 
adding refactoring tools and turning the direct manipulation 
editor into a visual programming environment. The direct 
manipulation workfow is aimed at modifying visual objects 
in languages with little separation between code and input. 
SSL-PBE is a technique for more expressive langauges. 

Small-Step Program Synthesis 
Several existing synthesis and APR techniques rely on a small-
step specifcation, or specifcations that tackle only local be-
havior within a larger program. 

Sketch and sketching 
Sketching (popularized by Sketch [42] and modifed into a 
variant used by many synthesis works [11, 41, 21, 34]) is a 
method for specifying to the synthesizer a partial implementa-
tion of the target program with holes, initially missing numeric 
values but now missing expressions or statements. Sketches 
isolate local steps for the synthesizer to fll, and are usually 
accompanied by a big-step specifcation (e.g., examples) from 
which a local specifcation for the holes is derived. 

SNIPPY differs from these in two ways: frst, synthesis queries 
in SNIPPY are themselves locally-specifed, and do not require 
the potentially-lossy transformation from a larger specifcation, 
and second, and enabled by the previous, SNIPPY can be used 
without end-to-end specifcations for the full program, which 
means it can be used to perform exploration. 

Single statement synthesis 
Small-step synthesis has been worked into IDEs to attempt 
predicting the next statement. For example, InSynth [17] code-
completes assignments using the type of the assigned variable 
as the specifcation. As another example, CodeHint [11] al-
lows the programmer to stop the program at a breakpoint and 
generate a new version of the next statement by providing a 
specifcation on the current program state (typically a typef-
based specifcation, though examples are possible). The user 
can trigger the breakpoint again to provide specifcations for 
more inputs, but those only serve to rule out candidates gen-
erated for the frst input state. While in CodeHint providing 
specifcations for multiple inputs requires running to the break-
point again and again, in SNIPPY the PROJECTION BOXES 
display fattens both loops and multiple inputs into a single 
list, allowing the user to specify any and all inputs at once. 

Both CodeHint and InSynth return several ranked options 
for the completion, a different interaction model than that 
of SNIPPY, which returns a single result. While returning 
a single result is an all-or-nothing approach, it also means 
that users do not need to select out of multiple options, a task 

that previous work has shown is diffcult for users to perform 
correctly without in-depth inspection [36]. 

Program states as specifcations 
Another form of local specifcations is direct state manipula-
tion, or changing the program’s internal state to create repair 
specifcations, as in Wolverine [46] and JDial [20]. Both pro-
vide ways for users to modify the values of variables along an 
execution trace of the program on a test input, then create a re-
pair to the program. Wolverine, which has a gdb-like interface, 
also hot-patches the repair and allows debugging to continue. 

Unlike both projects, which are APR tools, SNIPPY is a syn-
thesis tool. This means that SNIPPY’s user is not working on 
an already fully-written program and only correcting a bug 
found in the course of the execution. 

Both projects also tackle a common problem: APR can fnd 
a trivial fx that satisfes a specifcation by removing desired 
functionality. Wolverine’s solution is to let the programmer, 
while debugging the program, mark an intermediate state as 
specifcation, declaring the unmodifed state should appear 
in the execution trace of the fnal program. SNIPPY faces a 
similar problem, declaring certain behavior as already-correct 
while not forcing the user to specify all inputs. Its solution, dis-
cussed in the next section, is inspired by Wolverine’s solution, 
adapted from repair to synthesis. 

USER INTERFACE 
We implemented SNIPPY on top of PROJECTION BOXES [27] 
by making the variable values editable in each projection box. 
After the programmer modifes some values in a projection 
box, every modifed row becomes an example that is sent to 
a Programming by Example (PBE) synthesizer. Recall that 
the projection box for a line in the program contains multiple 
rows if that line is executed multiple times. 

Activating SNIPPY 
In order to allow SNIPPY to naturally become part of the de-
velopment workfow, it can be activated and specifed entirely 
via keyboard operations. To assign a synthesized value to a 
variable, the user begins typing an assignment statement, but 
instead of a concrete value, they assign ??: 

newVar = ?? 

This special token, which is not valid Python code, temporarily 
becomes the temporary assigned value 0 (since Python vari-
ables are not typed, a specifc initial value by type cannot be 
generated), and the focus is moved to the now-editable value 
of the variable, as in Figure 1(b). The user can then enter a 
new value, and start the synthesizer by hitting Enter . 

Modifed values are then packaged as examples to the synthe-
sizer, where each input state includes all variables that are in 
scope at the line that is being synthesized, namely all variables 
that appear in the projection box at that line. 

Editing examples 
Some examples are inconvenient to type, but easier to edit. For 
example, if the user wants to turn the string 'Augusta Ada King' 
in the variable s into a list of words ['Augusta','Ada','King'], 
they can start with a blank variable value and enter in every 



Figure 2. Using SNIPPY with multiple values. (a) PROJECTION BOXES 
showing multiple values for the same line, and (b) providing only some 
of the values as examples to SNIPPY. 

word into the list, but it is easier and far less error prone to start 
with the value of the string and edit it into a list. To this end, 
the user can activate SNIPPY with an expression reference: 
newVar = s?? 

This will put the user in edit mode for the values of newVar 
as before, but instead of a default initial value will populate 
newVar with the value of s. 

Multiple examples 
PROJECTION BOXES can show multiple values for a line of 
code. This can happen in one of two cases: if the function 
is called multiple times with multiple values, as seen in Fig-
ure 2(a), or if the current line of code is inside a loop. For 
SNIPPY, this means that there are different values for the in-
scope variables that can be sent to the synthesizer as multiple 
examples for the same expression. When the PROJECTION 
BOXES contain multiple rows, the edited variable becomes 
editable in all rows, as seen in Figure 2(b), and the user can 
travel between the values using the Tab key. 

Sometimes the user does not want to provide an output value 
for every row in the PROJECTION BOXES. A simple example 
for this would be inside a loop with many iterations, where 
two or three examples will suffce to demonstrate the desired 
functionality. SNIPPY allows users to only edit some of the 
output values. Rows where the value was changed are submit-
ted to the synthesizer as examples, and unchanged rows are 
ignored. Figure 2(b) shows highlighted rows that were edited 
by the user and will be sent as examples to the synthesizer. 

Occasionally, the value of some of the rows already exhibits 
correct behavior. These already-correct rows will not be 
changed, but if they are not sent to the synthesizer along 
with changed rows, a program that changes their behavior may 
be synthesized. To avoid this, SNIPPY lets the user specify 
that the output value in a row is correct as-is by selecting it 
with Shift + Enter . A variant of this problem was previously 
solved in Wolverine [46], where the user can mark a state as 
“specifcation” the execution must still pass through, but with 
no assurance which line of code will pass through it. 

Figure 3. The structure of our generate-and-test synthesizer. Programs 
are enumerated and passed to the validator to be tested against the user-
provided examples. 

A Synchronous Modality 
SNIPPY synthesis calls are synchronous. This means that 
once the user calls the synthesizer, a wait message (shown in 
Figure 1(c)) appears, and the user waits for synthesis to quickly 
fnish or fail. An asynchronous workfow could have been 
explored, but it would not allow SNIPPY to be used in a more 
exploratory manner. The synchronous workfow motivates 
us to use a timeout that is as brief as possible, which means 
our synthesizer must be extremely effcient to fnd meaningful 
expressions within that timeout. We chose a timeout of seven 
seconds, enough to synthesize programs of up to height 3 
(zero-based) on several desktop and laptop architectures, while 
staying well below a distruptive interruption [33]. In the next 
section, we discuss the design considerations when building 
such a synthesizer. 

SYNTHESIZER IMPLEMENTATION 
We designed and implemented a custom synthesizer to gener-
ate the one-line Python snippets requested by SNIPPY users. 
The synthesizer that we built is known as an enumerating 
generate-and-test synthesizer: broadly speaking, enumerating 
means that the synthesizer enumerates programs by expanding 
a grammar that represents the space of programs to search, and 
generate-and-test means that the synthesizer evaluates each 
enumerated program to test whether it fts the given examples. 
Figure 3 shows an overview of SNIPPY as a system, including 
details of our enumerating generate-and-test synthesizer. 

As with any synthesizer, the astronomical size of the search 
space is the main challenge, which we begin to mitigate us-
ing the known technique of observational equivalence [44, 3], 
which unifes all programs that behave the same on inputs from 
the example. However, our setting adds several additional chal-
lenges: (i) Python is a dynamically typed language, so types 
cannot be used out of the box to constrain the search, (ii) our 
synthesizer generates Python list comprehensions, which are 
loops, a hard problem for synthesis, (iii) our synthesizer needs 
to generate string constants to enable the string manipulation 
code that Python programmers write, and (iv) our synthesizer 
should work with as few examples as possible, despite PBE’s 
propensity for trivial solutions for such tasks. 

Yet, despite all these challenges, we need to create a synthe-
sizer that operates in an interactive setting, able to generate 
useful snippets in seconds. We discuss how we address each 
of these four challenges, while maintaining interactive speeds, 
in each of the following subsections. 



E ::= I | S | L | . . . 
I ::= x | I+I | S.find(S) | max(IL) | int(S) | . . . 
S ::= s | S+S | S[I] | S[I:I] | str(I) | S.join(SL) | . . . 
L ::= SL | IL 
SL ::= sl | S.split(S) | [S for var in L] | . . . 
IL ::= il | [I for var in L] 
x ::= vars with only int values in examples 
s ::= vars with only string values in examples 
sl ::= vars with only list-of-string values in examples 
il ::= vars with only list-of-int values in examples 

Figure 4. Fragment of the expression grammar supported by SNIPPY. E 
is the root expression; I are integer expressions; S are string expressions; 
SL are list-of-strings expressions; IL are list-of-ints expressions. 

Python as a typed language 
Python is a dynamically typed language, i.e., type-checking 
is deferred until runtime. This means a lot of fexibility, even 
allowing a variable at one statement in the program to take on 
different types each time the statement is executed. However, 
our synthesizer runs statically (i.e., before runtime), at which 
point type information in Python is not available. Without 
type information for the generated expressions, any possible 
operation could be applied to a given expression, which makes 
the search space intractably large. Instead, we treat Python as 
a typed language with integers, strings, booleans, and lists and 
dictionaries that are homogeneous in type. 

We do this by inferring variable types from the examples, 
and designing a grammar that has productions for each type, 
restricting the parameters of functions to certain types. To 
provide a sense of what this grammar looks like, Figure 4 
shows a fragment of the expression grammar used in SNIPPY 
(note it is far from the full grammar). This grammar only 
allows for homogeneous lists (lists of all integers or lists of 
all strings), and also restricts certain functions to operate only 
on certain types, e.g., max is restricted to lists of integers even 
though max can run on iterable types of all kinds. While 
this limits the SNIPPY synthesizer, it also greatly reduces the 
number of programs that must be searched, which lets SNIPPY 
fnd large and useful programs within seconds. 

List and Dictionary Comprehensions 
Our synthesizer is a bottom-up synthesizer, meaning that it 
uses production rules from the grammar to combine previ-
ously discovered expressions into larger expressions. For 
example, using the grammar in Figure 4 and the synthesis 
call in Figure 1(c), the enumerator starts with the terminal 
production rules, enumerating constants, including ' ', and 
the variables, in this case the string s. The enumerator then 
applies the rule S ::= S.split(S) to create all expressions of 
this form, with S replaced by any of the current string expres-
sions, which are the string constants and s, generating (among 
others), ' '.split(s) and s.split(' '). The process contin-
ues, iteratively building larger and larger expressions. Each 
expression is tested against the examples, and if an expression 
that satisfes all examples is found, it is returned to the user. 

Unfortunately, this process breaks down for list and dictio-
nary comprehensions that SNIPPY must support. Consider the 
production SL ::= [S for var in L] for making a list of 

strings from another list. The nonterminal S (the “body” of 
the comprehension) can include the new variable var, so S in 
this production is actually derived from a different grammar 
than L (since L cannot access var). To account for this, our 
synthesizer uses the approach proposed in [34]: expressions 
are generally built using a standard bottom-up approach, ex-
cept bodies of comprehensions, which are built using nested 
bottom-up enumerations. For SL ::= [S for var in L], 
the enumerator builds L bottom-up, and for each generated 
L it fxes L in the expression [S for var in L], and then 
starts a nested enumeration for S. 

Performing this new nested enumeration for comprehension 
bodies has three benefts: (1) the nested enumeration can 
include the comprehension variable var (2) the nested enu-
meration can omit the production rules for comprehensions, 
preventing nested comprehensions and reducing the search 
space, and (3) most importantly, this nested enumeration can 
incorporate the inputs from the examples into observational 
equivalence, as the external enumeration does, with the help of 
another technique called input extension [34], and by doing so 
drastically reduce the search space of the nested enumeration. 

Discovering string literals 
Bottom-up enumeration has to start with a set of constant 
literals like 0 and 1. To make synthesis effcient this set must 
be small. SNIPPY supports the constants -1, 0, 1, and ' ', 
though more constants can be enumerated with simple post-
processing. E.g., the expression 1 + 1 + 1 (generated by the 
grammar) can be simplifed via post-processing to 3. 

However, for string problems, particularly string wrangling, 
there is often a need for string literals that cannot be discov-
ered by the grammar, even with the above post-processing. 
One could, in theory, ensure the grammar contained string 
concatenation and every ASCII character, which would let the 
synthesizer construct any ASCII string, but this would make 
the search unusably slow, and still only cover English strings. 

Another approach to this problem, taken by the benchmark 
suite of the competition for syntax-guided solvers [4], is to 
adapt the synthesizer’s grammar for every problem, adding 
only the string literals needed on a per-task basis. However, 
this does not suit a live system like SNIPPY where the user can 
ask for arbitrary problems to be solved, since we do not want 
to burden the user with specifying string literals each time. 

SNIPPY implements a middle ground between these ap-
proaches. Its grammar is initialized with a single string literal, 
’ ’, but is extended as necessary. Before enumeration, the 
synthesizer searches the outputs of the provided examples 
for substrings that do not appear in any of the inputs or the 
grammar, and adds them to the grammar. For instance, in our 
motivating example, the output initials are separated by the 
character ’.’, which is not part of the SNIPPY grammar. If it 
does not appear in any of the input variables in the example, 
then it will be added to the grammar. However, if the user 
had added a new variable dot with the value ’.’, then a new 
constant is no longer needed, and it will not be added. 



Variable usage 
Synthesizers often require that the synthesized expression use 
all variables available, a property called relevancy [16]. How-
ever, this requirement does not make sense for SNIPPY. The 
example inputs include every variable in scope during the 
assignment statement being synthesized, including inputs to 
previous steps and intermediate results. Forcing the synthe-
sizer to use all these variables can lead to unintuitive and hard 
to explain results, and will likely cause no result to be found. 

However, removing the relevancy requirement entirely is also 
problematic. Let us assume the user gives the variable out the 
value -2. Several programs will evaluate to -2 on the inputs 
from the examples, but the frst one found by the synthesizer is 
-1 + -1, which is then post-processed into -2 and returned to 
the user. PBE tools approach this scenario in one of two ways: 
by requiring the user to add another example to show -2 is not 
always the output, or by biasing the synthesis process heavily 
against constants. This bias is sometimes so severe that, for 
instance, if -2 is needed within a larger expression like s[-2] 
(the second to last character of the string s), the synthesizer 
would prefer a program where -2 is generated with as few 
constants as possible, such as a.find(b) + a.find(b) when b 
is not a substring of a. The result, s[a.find(b) + a.find(b)], 
is both less general—it works for the current inputs, but may 
not work for others—and makes little sense unless the user 
understands this biased model. 

SNIPPY does not bias its search against constants in general, 
but applies a reduced relevancy requirement by not returning 
a result program that does not use variables. For example, it 
will construct the expression -2, and use it to construct larger 
programs such as s[-2]. However, if the example output is -2, 
the synthesizer will not return -2 as the target program, and 
instead continue searching for a more suitable program. 

STUDY METHODOLOGY 
To evaluate SNIPPY, we conducted a within-subjects user 
study comparing Python development using SNIPPY to devel-
oping with PROJECTION BOXES. 

We focused our study on the following research questions: 

RQ1: Does SSL-PBE make a difference in speed and correct-
ness compared to an unaided development process? 

RQ2: How useful is SSL-PBE, as measured for example 
by the percentage of the fnal code that is written by 
SNIPPY vs by the user? 

RQ3: Do users report positive experiences with SSL-PBE? 
RQ4: How does SSL-PBE compare to searching the internet 

for help? 

We recruited 13 participants, 9 male, 4 female, with between 
3 and 23 years of programming experience (average 8.7) for a 
two-hour user study. We asked potential participants to self-
rate their Python experience on a scale of 1 (not familiar at 
all) to 5 (extremely familiar), and selected participants with 
experience between 2 and 4. 

Tasks 
Each participant solved 4 Python tasks from the competitive 
programming website codewars.com. The tasks are: 

A: abbreviate2: Convert full name to lowercase initials 
separated by periods 

B: count-duplicates3: return number of characters that 
appear in a given list more than once 

C: max-min4: compute min and max of a list 
D: palindrome5: compute whether a string can be a palin-

drome if rotated by one ore more characters 

We grouped the tasks into two sets that provided the same 
level of diffculty: (A,B) and (C,D). A and C were easier tasks, 
while B and D were harder tasks. We used two order of the 
tasks: (A,B);(C,D) and (C,D);(A,B). 

Control and Test Conditions 
We use two tool confguration, one control and one test. The 
control is called PROJECTION BOXES, which in this case 
will refer to the live visualization without SNIPPY. The test 
condition is SNIPPY. Since users had never seen PROJECTION 
BOXES before, we randomized the order of the control/test 
to prevent any advantage to SNIPPY users from being more 
experienced with PROJECTION BOXES. 

Since we have two orders of the control/test, and two orders 
of the tasks, we have four groups: 

1. SNIPPY: (A,B) ; PROJECTION BOXES: (C,D) (4 users) 
2. PROJECTION BOXES: (C,D) ; SNIPPY: (A,B) (2 users) 
3. SNIPPY: (C,D) ; PROJECTION BOXES: (A,B) (4 users) 
4. PROJECTION BOXES: (A,B) ; SNIPPY: (C,D) (3 users) 

Participants were randomly assigned into the above groups, 
maintaining even group sizes, divided by level of expertise. 
Participants were then asked to solve the frst two tasks with 
the frst tool and the second two tasks with the second tool. 

Study Session 
The study was conducted remotely via video conferencing. 
Because SNIPPY requires installing and setting up a runtime 
environment, the study was also conducted via remote control. 

Users were frst given a survey about their background as 
programmers. Additionally, users were asked whether they 
have experience with other synthesis tools, either by prior use 
of academic tools or using smart code completion products. 

We developed two instructional videos, one for PROJECTION 
BOXES, and one for SNIPPY. The SNIPPY video assumes 
PROJECTION BOXES had been introduced. Participants start-
ing with PROJECTION BOXES were shown the PROJECTION 
BOXES video before using PROJECTION BOXES, then the 
SNIPPY video before using SNIPPY. Participants starting with 
SNIPPY were shown both the PROJECTION BOXES and the 
SNIPPY video before starting with SNIPPY, and no additional 
video before using PROJECTION BOXES. After the instruc-
tional video for a tool participants were given a demo task not 

2https://www.codewars.com/kata/554b4ac871d6813a03000035, an 
additional step asking for a lowercase abbreviation was added to 
make the task more diffcult. 
3https://www.codewars.com/kata/54bf1c2cd5b56cc47f0007a1 
4https://www.codewars.com/kata/554b4ac871d6813a03000035 
5https://www.codewars.com/kata/5a8fbe73373c2e904700008c 

codewars.com
https://www.codewars.com/kata/554b4ac871d6813a03000035
https://www.codewars.com/kata/54bf1c2cd5b56cc47f0007a1
https://www.codewars.com/kata/554b4ac871d6813a03000035
https://www.codewars.com/kata/5a8fbe73373c2e904700008c


Figure 5. Percentage and number of correct answers for each task. 

Easy Hard 

abbreviate max-min 
count-

duplicates palindrome 

All avg 
med 

22% 
21% 

33% 
139% 

-7% 
-18% 

2% 
-21% 

Correct avg 
med 

21% 
28% 

13% 
80% 

-25% 
-36% 

-1% 
-21% 

Table 1. Changes in session times in SNIPPY compared to PROJECTION 
BOXES. Negative percentage indicates a speedup. 

related to the study tasks for a few minutes of guided explo-
ration of the tool. Users were also given an opportunity to ask 
questions about the tool after the demo tasks. 

Participants then performed the tasks. When using PROJEC-
TION BOXES, participants were given a web browser and free 
internet access to search for code, whereas SNIPPY users 
were only given SNIPPY. Participants were instructed to use 
SNIPPY as much (or as little) as they wish. Tasks included 
suggested examples to help users check their answers. Partic-
ipants determined when a task ended, either by saying they 
completed it or by giving up on the current task and moving 
to the next task. Each task was capped at 35 minutes. 

After all four tasks, users were given a fnal survey asking 
them to refect on ways SNIPPY helped them to write code. 

RESULTS 

Session times and correctness (RQ1) 
Figure 5 shows the number and percentage of correct answers 
to each task, determined via 10 unit tests for each task that 
were run after the session ended.. Our study is too small to 
show statistical signifcance, but we examine the tasks with 
the most notable differences: abbreviate and palindrome. 

In abbreviate, participants who did not have SNIPPY made 
more mistakes. Most of the mistakes in abbreviate had to 
do with using an incorrect separator between initials. Users 
who used SNIPPY to synthesize the code that combines the 
frst letters of the names did not make this mistake, as they 
used the given expected output to generate the correct code. 
Also, of the two participants who gave up on palindrome (P1, 
and P12), P12 did not use the synthesize function feature of 
SNIPPY for the entire 20 minute session, essentially reducing 
the session to a PROJECTION BOXES session. 

Table 1 shows the change in session times from PROJECTION 
BOXES to SNIPPY, with PROJECTION BOXES as a baseline. 
A negative percentage indicate a reduction in session time 
(speedup), whereas a positive percentage indicates an increase 
in session time (slowdown). The numbers are provided both 

count-

abbreviate max-min duplicates palindrome 

Useful calls avg 61% 36% 36% 27% 
Total calls med 58% 25% 20% 20% 

Synthesized avg 47% 66% 28% 18% 
All code med 47% 65% 23% 15% 

Table 2. Synthesis calls in relation to the fnal solution 

for all sessions, and for all sessions where the participants 
found correct solutions. 

While our study is not large enough to provide statistically 
signifcant results, broadly speaking, our preliminary num-
bers suggest a possible pattern based on how hard the task 
is. Indeed, recall that abbreviate and max-min were eas-
ier tasks, while count-duplicates and palindrome were 
harder tasks. In the two easier tasks, SNIPPY appears to make 
the sessions longer, whereas for the two harder tasks, SNIPPY 
appears to make the sessions shorter. 

There are two factors that could explain this. First, for eas-
ier tasks, writing the code directly can be faster than using a 
synthesizer, especially if using the synthesizer requires multi-
ple round trips (e.g., if the frst example is insuffcient, and a 
second example is needed). 

Our results echo those of previous studies such as Galenson 
et al. [11], where using synthesis in a freeform manner more 
than doubled the time to completion of the task. However, 
we are encouraged by the fact that our slowdown is not as 
severe, indicating the live programming aspect of SSL-PBE 
helps mitigate some of the overhead of using the tool. 

Usefulness of Synthesis (RQ2) 
We measured how many synthesis calls were useful to the 
programmer. We counted as useful any synthesis call where 
a non-trivial part of the synthesized code was used in the 
participant’s fnal program. As not useful we counted all other 
calls, including calls where synthesis timed out. The results 
are in the top part of Table 2. 

In general, we see that a sizeable number of synthesis calls 
are not useful. Still, for every task but palindrome at 
least one participant had 100% useful synthesis calls. P8 in 
count-duplicates and P12 in palindrome had no useful 
calls in the course of solving their task. 

Additionally, we measured how much of each user’s fnal pro-
gram originated from the synthesizer. To do this, we computed 
the proportion of tokens (using Python’s own code tokenizer) 
in the user’s answer that came from synthesis. We did not 
count things not generated by SNIPPY, such as the assignment 
into a variable or the return statement of the function, and in 
the case the user renamed a variable in the synthesized code, 
the variable name was counted as user code, while the rest 
of the snippet was counted as synthesizer code. In short, we 
measured the manual effort that was performed by the user 
and how much was delegated to the synthesizer. The average 
and median results are in the bottom part of Table 2. 

Because SNIPPY does not generate things like the return state-
ment or assignments, and because palindrome required a 



Average Median Dist. 

SNIPPY helped me write my code 3.46 3 

SNIPPY was easy to use 4.23 4 

I would use SNIPPY again 3.54 4 

SNIPPY would be useful beyond today’s tasks 3.69 4 

I would like to have PROJECTION BOXES 4.54 5 

I would like to have SNIPPY available 4.38 5 
Table 3. Survey Results. All questions are on a likert scale where 1 is 
“Disagree” and 5 is “Agree”. 

loop to be manually written, 100% synthesized was not a pos-
sible result. Broadly speaking, programmers tackling the 
harder tasks (count-duplicates and palindrome) wrote 
more of the program manually. These tasks are harder to break 
up into synthesis-ready chunks, and in some approaches to 
the task, the synthesizer will no longer help. All tasks except 
palindrome could be solved almost entirely by synthesis, 
and the largest portion synthesized by one user was 83% in 
count-duplicates (P3, 39 of 47 tokens). The way a prob-
lem is deconstructed for synthesis is crucial to how much of 
it can be synthesized. Users whose breakdown of the task 
meshed with SNIPPY could synthesize every step and write 
almost no code, whereas users who did not come up with such 
a breakdown were still able to synthesize code, but to a lesser 
extent. Overall, we see that although a lot of synthesis calls 
were not successful, calls that were successful provided users 
with substantial parts of the solution. 

SNIPPY and data-dependent loops 
A very frequent cause of failed synthesis calls was an attempt 
to synthesize statements inside loops that cause a data depen-
dency between the iterations, or a loop where a variable is 
written to in one iteration, then used in the next, a simple 
example of which is sum = sum + i. Dependent loops are a 
known hard problem in program synthesis [34], and are notori-
ously hard to specify correctly even under the best conditions. 
Attempting to synthesize these was a gap in the participants’ 
understanding of the synthesizer limitations (even for partici-
pants who were previously familiar with synthesis tools). We 
discuss the implications of this gap in the next section. 

User survey (RQ3) 
Table 3 shows the results of our survey, including the average, 
median and the distribution of scores. In the “Discussion” 
section below we will discuss in more detail the factors that 
affect the utility of SNIPPY, and explain these results. For now, 
we do note that, even though the scores on utility are lower 
than others, because SNIPPY can be invoked as needed, users 
still overall said they would like to have SNIPPY available. 

Comparison to Searching the Internet (RQ4) 
One of the questions in our post-study questionnaire asked par-
ticipants to compare SNIPPY to searching the internet. Overall, 
23.1% of participants said that they preferred SNIPPY to the 
internet, 15.4% said they preferred the internet, and the re-
mainder said that it depends and explained the trade-offs. 

P1, P10, and P12 stated that SNIPPY can work well even if one 
does not have a clear picture of what they should search for 
online. P1 also said that SNIPPY solutions are more concise. 

One recurrent theme we observed is that searching the internet 
and SNIPPY supplement each other, each having different 
strengths. (In fact P7 said that they would frst try SNIPPY 
and if that didn’t work they would search the internet.) For 
the kinds of code snippets that SNIPPY can generate, SNIPPY 
is better, for several reasons that were explicitly mentioned 
by our participants. First, SNIPPY can fnd a solution quickly 
without imposing the cognitive burden of switching to another 
window or tool. Second, SNIPPY can fnd compact solutions. 
Third SNIPPY correctly connects the generated snippet to the 
surrounding code – in contrast solutions from the internet often 
need to be adapted and correctly glued into the surrounding 
context, a non-trivial and error prone task. Finally SNIPPY 
can work well even when the programmer does not have a 
clear picture of what to search for on the internet. 

On the other hand, however, SNIPPY (as with any synthesis 
tool) has limitations in what it can do, and this affects its utility 
compared to searching the internet. 

DISCUSSION 

Usage of Small-Step Live Programming by Example 
Through our study, we identify three predominant ways in 
which SNIPPY helped programmers. 

First, some participants used SNIPPY in precisely the way we 
anticipated: decomposing the problems into smaller steps, then 
editing the live data to make SNIPPY generate code snippets 
for those smaller steps. In these cases, SNIPPY does not help 
algorithmically, but instead provides help with individual steps 
of a larger algorithm. The most successful uses of SNIPPY 
were ones where the programmer came up with the high-level 
strategy, and SNIPPY helped with the individual steps. 

Second, some participants used SNIPPY “on the side”: they 
would stop coding the main task they were working on, and 
start writing code separately to get SNIPPY to generate a useful 
snippet. For example, P1 used this approach to generate code 
for rotating a string by a constant number—3 characters. Once 
the code for rotating a string by 3 was generated, P1 took the 
snippet, generalized it to an arbitrary rotation by k and placed 
it inside a loop. This interruption in the fow of programming 
leads to a less fuid process, but still uses SNIPPY effectively. 

Third, some participant used SNIPPY to recall details about 
Python syntax or Python libraries they had forgotten. In this 
situation, the programmer might know how to do something, 
but forgot (or possibly is not fully familiar with) the details 
of expressing it in Python. Examples of such easily forgotten 
details, especially for those with less Python experience (but 
even for programmers with a lot of Python experience) include: 
the order of parameters to certain methods, like split; the 
exact syntax of dictionary comprehension; the exact syntax 
of list/dictionary comprehension with an embedded flter; the 
name of library functions, e.g., for converting characters to 
lower case, for returning the keys and values of a dictionary, 
or for returning the elements and indices of a list. 



Understanding Synthesized Code 
When a synthesizer generates code, there is a question of how 
well the programmer understands the code. In our study, pro-
grammers checked that the code appeared reasonable but did 
not try to understand the details. In some cases, participants 
remarked on the synthesized code being simpler than they 
would have written. In other cases, participants explicitly said 
that the code worked, but they did not fully understand it. 

One may be concerned about correctness when programmers 
use code that they do not fully understand, but in our study we 
observed that this did not drive programmers to an incorrect 
solution. We also observed users sometimes take code snippets 
they do not fully understand from the internet in our control 
setting, and are not the frst to document this [6]. 

However, we observed a much more interesting problem when 
programmers do not understand the synthesized code: it leads 
to the mindset that the synthesizer is all-or-nothing: either 
the synthesizer eventually generates code that works, or if not, 
then the programmer just gives up on the synthesizer altogether. 
Unfortunately, this can prevent the programmer from using an 
almost-correct solution generated by the synthesizer. 

This happened to P2 who used SNIPPY in palindrome to 
generate an almost-correct solution. Given the setup that the 
programmer used, the synthesized code only worked for lists 
of size 4. Had the programmer generalized 4 to an expression 
for the list’s length, the problem would have been solved. 
Instead they tried unsuccessfully to generalize the examples 
and re-synthesize, and eventually gave up on the problem. 

More generally, this leads us to the following takeaway: 

Because programmers do not try to understand the code 
generated by the synthesizer, they unnecessarily shy away 
from trying to use partial results from the synthesizer. 

This in turn points to a possible direction for future research, 
namely on understandability and usability of partial results in 
synthesizer-generated code (something that has already started 
being explored, for example in Wrex [9] and Bester [35]). 

Mental Model of the Synthesizer 
We have noticed that the mental model that the programmer 
has of the synthesizer is very important. We start by framing 
our discussion in terms of the well-known gulfs of evaluation 
and execution. The gulf of evaluation captures how well a user 
can understand the internal state of the system. The gulf of 
execution captures how well a user can discover how to make 
the system take steps toward an ulterior goal. In the setting of 
programming, the gulf of evaluation relates to understanding 
the program state and its result; the gulf of execution relates 
to understanding what kinds of statements should be written 
next to fnish a task. E.g., at a command line prompt, showing 
the current directory and the computer name eases the gulf 
of evaluation (exposing internal state); making commands at 
the prompt discoverable via auto-complete or command-line 
searches may ease the gulf of execution (making it easier to 
choose the next step toward a goal). 

PROJECTION BOXES help with the gulf of evaluation, since 
they make the internal state of the program visible at all times. 
However, they do not help explicitly with the gulf of execution, 
since they do not help directly with writing the code. 

SNIPPY provides this missing aspect of PROJECTION BOXES, 
easing the gulf of execution with explicit help discovering the 
next statement toward a broader end goal. However, this over-
simplifcation misses an important subtlety. While SNIPPY 
does ease the gulf of execution in some ways, it introduces 
a different kind of burden that also relates to the gulf of exe-
cution: the programmer must now pick between SNIPPY and 
one of three other approaches: (1) writing the code by hand, 
(2) searching the internet, or (3) manually decomposing the 
problem into smaller pieces to try with SNIPPY. 

So, in essence, we have shifted the gulf of execution from 
one kind of gulf to another: from fguring out what statement 
to write next, to fguring out if SNIPPY should be used for 
the next statement. This new gulf of execution is particularly 
interesting because for programmers to make the choice be-
tween SNIPPY and other approaches, we have observed that 
they must have an accurate mental model of the synthesizer’s 
abilities. If a programmer broadly understands (through trial 
and error) what kinds of tasks the synthesizer can do, they will 
know when to invoke the synthesizer and when to try some-
thing else. However, if the programmer has a poor mental 
model of the synthesizer’s ability (e.g., one that overestimates 
the synthesizer’s ability), then the programmer might waste 
time and energy trying to get the synthesizer to do something 
that it simply cannot. This leads to frustration, making it less 
likely that the synthesizer will be used the next time around. 
Furthermore, if the programmer underestimates the synthe-
sizer’s ability, they will under-utilize the tool. 

We introduce the term user-synthesizer gap to refer to 
this gap between the user’s mental model of the synthe-
sizer’s abilities and the actual abilities of the synthesizer. 

We are not the frst to notice this kind of effect. Lau [24] 
explored the related topic of a user’s trust of the synthesizer, 
concluding that the adoption of Programming by Demonstra-
tion tools is held back by tool behaviors that undermine that 
trust. Gero et al. [12] explored mental models of AI agents in 
an interactive game, strengthening the conclusion that mistrust-
ing the system is detrimental to success of the user, but also 
fnding that: (1) users with a generally good understanding of 
AI systems developed a better mental model of the AI agent 
and (2) people tended to overestimate the AI’s abilities. 

The way the user-synthesizer gap manifested itself in our study 
shows that the overestimation of the AI system’s capabilities 
documented by Gero et al. also occurs for synthesizers, but 
that it may involve underestimating the synthesizer’s ability 
instead. Because state-of-the-art general-purpose synthesizers 
still cannot generate all the necessary code in a real setting, 
the only way a synthesizer can help a programmer is on sub-
problems to a larger task. In this situation, the user-synthesizer 
gap will inevitably come into play. This is less pronounced 
in domain-specifc tools, as the limits of the domain act as an 
accurate mental and actual model for the synthesizer’s limits. 



We observed three properties about this gap. First, it is a much 
bigger problem if the user over-estimates the synthesizer’s 
ability than underestimates it. Second, the larger the gap is, the 
more diffcult it becomes for the programmer to make choices 
about how to incorporate the synthesizer into programming 
tasks. Third, this gap is self-correcting in some ways, in that if 
the gap is large, programmers eventually understand this, and 
adjust their mental model to reduce the gap. Consequently, 
as the programmer learns more about the synthesizer through 
trial and error, the gap can decrease over time, but this is a non-
trivial learning curve that takes time, and can be a signifcant 
impediment to the adoption of synthesizers. 

All the above observations lead us to believe that reducing the 
user-synthesizer gap represents an impactful future research 
arc that has the potential to further unlock the potential of 
state-of-the-art synthesis techniques. 

LIMITATIONS 
While the results of the study are promising, our study has 
certain limitations that remain to be addressed in future work. 

Our study compares SSL-PBE with live programming aug-
mented with searching the internet in a browser. Further stud-
ies would be needed to compare SSL-PBE to other interaction 
models, such as web searches or knowledge bases embedded 
in the IDE [28, 10], big-step synthesis tools in and out of the 
IDE [21], and smart code completion [17]. 

There are also several threats to the validity of our results. Our 
survey was conducted in the presence of one of the authors, 
which could lead to a social desirability bias. Additionally, the 
phrasing of questions was not neutral (e.g. “SNIPPY helped 
me write my code” instead of “How helpful was SNIPPY in 
writing your code”). 

There may also be a bias in our fndings on users’ understand-
ing of the synthesized code. Our tasks each included one 
or more examples participants could input into the live pro-
gramming environment, which could limit users’ view of the 
code to those inputs and discourage them from examining the 
synthesized code further. 

Finally, the small sample size and short length of tasks could 
be a threat to the internal validity of the study. Individual 
differences in coding speed could affect the conclusions we 
drew from the length of the programming sessions. 

CONCLUSION 
We introduced a new paradigm called Small-Step Live Pro-
gramming by Example and discussed its implementation in 
SNIPPY. Through a within-subjects study we demonstrated 
that this paradigm is easy to use, and is most effective in 
non-trivial tasks. We also found that almost all participants 
preferred SNIPPY over searching the internet in some cases. 
Furthermore, our study showed that most users did not at-
tempt to understand the code deeply, which resulted in an 
all-or-nothing approach to using SNIPPY’s output. Finally, we 
identifed the “user-synthesizer gap”, which describes the gap 
between the user’s mental model of the synthesizer’s capabili-
ties and its actual capabilities. We believe that reducing this 
gap represents an important direction for future research. 
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