
159

Programming with a Read-Eval-Synth Loop

HILA PELEG, UC San Diego, USA
ROI GABAY, Technion, Israel
SHACHAR ITZHAKY, Technion, Israel
ERAN YAHAV, Technion, Israel

A frequent programming pattern for small tasks, especially expressions, is to repeatedly evaluate the program
on an input as its editing progresses. The Read-Eval-Print Loop (REPL) interaction model has been a successful
model for this programming pattern. We present the new notion of Read-Eval-Synth Loop (RESL) that extends
REPL by providing in-place synthesis on parts of the expression marked by the user. RESL eases programming
by synthesizing parts of a required solution. The underlying synthesizer relies on a partial solution from the
programmer and a few examples.

RESL hinges on bottom-up synthesis with general predicates and sketching, generalizing programming by
example. To make RESL practical, we present a formal framework that extends observational equivalence to
non-example specifications.

We evaluate RESL by conducting a controlled within-subjects user-study on 19 programmers from 8
companies, where programmers are asked to solve a small but challenging set of competitive programming
problems. We find that programmers using RESL solve these problems with far less need to edit the code
themselves and by browsing documentation far less. In addition, they are less likely to leave a task unfinished
and more likely to be correct.

CCS Concepts: • Software and its engineering → Source code generation; Automatic pro-

gramming.
Additional Key Words and Phrases: program synthesis, read-eval-print loops, specification predicates
ACM Reference Format:

Hila Peleg, Roi Gabay, Shachar Itzhaky, and Eran Yahav. 2020. Programming with a Read-Eval-Synth Loop.
Proc. ACM Program. Lang. 4, OOPSLA, Article 159 (November 2020), 43 pages. https://doi.org/10.1145/3428227

1 INTRODUCTION

A frequent programming pattern for small tasks, especially one-liners, is to repeatedly evaluate the
program on an input as its editing progresses. For convenience, users often take such an expression
out of its context into a programming environment where a quick cycle of editing and executing is
supported. The Read-Eval-Print Loop (REPL) provides such an environment and is a staple of many
programming languages, including Python, JavaScript, and Scala. We present the new notion of
Read-Eval-Synth Loop (RESL), which extends REPL by providing in-place synthesis on parts of the
expression provided by the user. Our experiments show that RESL reduces programmers’ effort,
increases their task completion rate, and improves program correctness.
Read-Eval-Print Loop (REPL) The REPL model transforms the original development cycle of
edit-compile-run-debug, tightening the development loop for small pieces of functionality. In the
Authors’ addresses: Hila Peleg, UC San Diego, USA, hpeleg@ucsd.edu; Roi Gabay, Technion, Israel, roigby@gmail.com;
Shachar Itzhaky, Technion, Israel, shachari@cs.technion.ac.il; Eran Yahav, Technion, Israel, yahave@cs.technion.ac.il.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2020 Copyright held by the owner/author(s).
2475-1421/2020/11-ART159
https://doi.org/10.1145/3428227

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 159. Publication date: November 2020.

https://doi.org/10.1145/3428227
https://doi.org/10.1145/3428227

159:2 Hila Peleg, Roi Gabay, Shachar Itzhaky, and Eran Yahav

REPL model, the user provides an environment and an expression, an educated guess of the desired
program, and the machine evaluates the expression and prints the result. REPLs provide exploratory
programming and debugging where the programmer iteratively inspects the printed result and
adjusts the initial guess accordingly.
Programming with Read-Eval-Synth Loop We wish to apply a similar transformation of the
development cycle to the way programmers use synthesizers. RESL offers a synthesis-focused
interaction model, supporting an iterative workflow with both the interpreter and the synthesizer,
preserving all the benefits of the REPL while also providing synthesis capabilities. Where a REPL
operates on values assigned to environment variables, RESL operates on a set of input values,
allowing the user to specify the expected output for each input. This functionality meshes well
with the paradigm of Programming by Example (PBE) [Feser et al. 2015; Gulwani 2011, 2012, 2016;
Osera and Zdancewic 2015; Polozov and Gulwani 2015; Wang et al. 2017a; Yaghmazadeh et al.
2018], where the tool produces a program that satisfies the input-output pairs. To augment the
examples, the user can pick parts of the program to preserve, and others that should be replaced by
the synthesizer, controlling where to focus the synthesis effort.
Existing Techniques Many works in recent years attempted to bring synthesis into the hands of
end-users and programmers. A common interaction model relies on sketching [Bornholt et al. 2016;
Hua and Khurshid 2017; Smith and Albarghouthi 2016; Wang et al. 2018], where the user provides
a program with holes, and some form of specification and the synthesizer fills the holes in a way
that satisfies the specification. PBE is a prominent avenue for synthesis specifications, as examples
are usually part of task definitions, and can be provided and understood even by non-programmers
(though being a partial specification, they do not restrict the behavior for unseen inputs, and often
require additional refining). RESL combines the power of the two interaction models and provides
an iterative and interactive way to program with a synthesizer in the loop.

RESL can also be viewed as an iterative and interactive repair problem but differs from the many
works of repair-by-synthesis [D Le et al. 2017; Hua et al. 2018; Long and Rinard 2015; Xiong et al.
2017] because it is intended for interactive use.
Our Approach We present programming with a Read-Eval-Synth Loop (RESL), a new interaction
model that extends the widely used REPL model with an effective synthesis step.

RESL is just like REPL, with the additional help of a synthesizer. This raises two high-level
challenges: (1) what is the right interaction model in which the user can express intent to the
synthesizer, and (2) how can the synthesizer leverage information from the interactive session to
make synthesis efficient and practical in an interactive setting.
(1) Interacting with the synthesizer We conjecture that a good interaction model for small tasks
combines: REPL, test cases, synthesis, and specification mechanisms that do not rely solely on input
and output values. In addition to test outputs, RESL allows the user to specify their intent using
syntactic restrictions on the expected program. We formalize these specifications as predicates on
programs.
(2) Efficient synthesis The new specification mechanisms interfere with existing search space
pruning techniques, e.g., observational equivalence [Albarghouthi et al. 2013; Udupa et al. 2013],
which are required to make the search tractable. Our main technical contribution is to extend
observational equivalence, from execution values on inputs to observers that differentiate between
programs on a per-predicate basis.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 159. Publication date: November 2020.

Programming with a Read-Eval-Synth Loop 159:3

Main Contributions The contributions of this paper are:

(1) A new interaction model for small programming tasks in a REPL, which leverages “synthe-
sis in the loop” as part of the iterative Read-Eval-Synth interaction. This model is a strict
generalization of synthesis based on input-output examples.

(2) A formal framework for bottom-up synthesis with sketching and specification predicates,
which generalizes the original, example-based notion of observational equivalence.

(3) An empirical evaluation that shows our modification of the synthesizer is necessary and yields
a tractable procedure.

(4) A user study involving 19 industry developers who are JavaScript novices, which showed RESL
helps them correctly solve challenging competitive programming tasks, reducing the editing
load, frustration, and the need for documentation.

2 OVERVIEW

2.1 Motivating Example

Our aspiring programming ninja is solving a competitive programming “kata” numbers-to-digit-tiers:

Create a function that takes a number and returns an array of strings containing the
number cut off at each digit.
For example: 420 should return ["4", "42", "420"]

2020 should return ["2", "20", "202", "2020"]

The user, an experienced programmer but a JavaScript novice, has in mind an approach: iterating
over a range of numbers up to the number of digits, they will take the first 𝑖 characters from the
string representation of the number each time. They could set out to solve it in a REPL, iteratively
testing and honing their proposed solution. However, they are uncertain about how to implement
parts of their solution and turn to RESL, where some not readily known parts can be synthesized.
The following describes their RESL session as seen in Figure 1:
Step 0 (initial state): a new RESL session starts with a default program input, returning the value
of the variable input, and no examples.
Step 1: the user enters the task’s input-output examples into RESL (user edits are denoted by¥).
Inputs are assigned to the variable input.
Step 2: RESL evaluates the inputs on the current program, input, and displays the outputs to the
user (values computed by the system are denoted by §).
Step 3: The user arrives at a partial solution. Arriving at this partial solution could itself be an
iterative process, with the user trying a few programs, each of which is executed on both values of
input. They come up with a map that they believe will perform as expected, and test it on the first
and last elements of the desired range, 1 and input.toString().length.
Step 4: RESL computes the outputs on this program, and the user sees that the first and last elements
are as expected.
Step 5: The only thing left to do is to create the range, which should be 1..input.toString().length.
The user does not know how to construct a range, so instead, theymark the current array expression

as a portion of the program that should be replaced. This is called a sketch: the user expresses their
intent to keep everything outside this sub-expression as is, while turning it into a hole to be replaced
with a new expression. The user also adds their intent that input.toString().length, the length of
the range, be used in the solution by selecting it as a sub-expression to be retained. They click the
Synthesize button to activate the synthesizer.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 159. Publication date: November 2020.

159:4 Hila Peleg, Roi Gabay, Shachar Itzhaky, and Eran Yahav

initial program returns the variable input; there are no examples yet

user specifies examples:
values for variable input and expected outputs

RESL computes the actual outputs

user enters program

RESL computes new outputs

user sets fix location
and adds a retained subexpression to
specifications, then clicks Synthesize

RESL synthesizes a subexpression
to match the specification and
applies it to the program

(0) > input §

(1) > input

input¥ expected¥

420 ["4", "42", "420"]

2020 ["2", "20", "202", "2020"]

(2) > input

input expected output§
420 ["4", "42", "420"] 420
2020 ["2", "20", "202", "2020"] 2020

(3) > [1,input.toString().length].map(i => input.toString().slice(0,i)) ¥

(4) input expected output§
420 ["4", "42", "420"] ["4", "420"]

2020 ["2", "20", "202", "2020"] ["2", "2020"]

(5) > ? ¥ .map(i => input.toString().slice(0,i))

Specification:
retain input.toString().length ¥

input expected
420 ["4", "42", "420"]

2020 ["2", "20", "202", "2020"]

(6) > Array.apply(null,{’length’ : input.toString().length})

.map((e,i) => i+1) §

.map(i => input.toString().slice(0,i))

input expected output§
420 ["4", "42", "420"] ["4", "42", "420"]

2020 ["2", "20", "202", "2020"] ["2", "20", "202", "2020"]

Fig. 1. The steps in a RESL session trying to solve the numbers-to-digit-tiers kata. Actions taken by the

user indicated by ¥, values computed by RESL indicated by§.

See a video of this example: https://www.youtube.com/watch?v=QF9KtSwtiQQ

Step 6: The synthesizer finds an assignment for the hole which satisfies all provided user intent:
input-output examples and the retained expression. It shows the assignment to the user, along with
the outputs, which are the expected outputs.
An alternate approach: the user could start off by immediately synthesizing the expression for
the range. To that end, they would modify the input-output examples to be 420 → [0,1,2] and
2020 → [0,1,2,3], specifying the sub-task first, then revert the examples to those appearing in the
task and iterate on the content of the map to reach the function parameter that appears in step 3.

2.2 The Anatomy of a RESL-ing Session

A RESL-ing session is an iterative loop comprised of two dialogues, as shown in Figure 2. The first
loop is between the human user and the Arena, the RESL’s user interface, which allows the user
to view the program and manipulate it by editing, viewing its output and intermediate states on
examples, and preparing a synthesis query for a subexpression they would like fixed. The second is
between the user and the synthesizer, mediated by the Arena, which is conducted in a sequence of
queries and answers constructed and processed for display for the user by the Arena.
Interaction with the Arena The user can advance the session with the interface in one of two
ways: (i) editing the program or the hole to be synthesized, or (ii) instantiating predicates on
programs that capture the specification, which will be sent to the synthesizer when it is called.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 159. Publication date: November 2020.

https://www.youtube.com/watch?v=QF9KtSwtiQQ

Programming with a Read-Eval-Synth Loop 159:5

Fig. 2. The dual iterativeness of RESL: the user writes programs iteratively in the RESL Arena as in a REPL,

while also entering examples and other specifications. When the user makes a synthesis call, the Arena

invokes the synthesizer, which provides the Arena with a new program in place of the user.

The iterations for steps 1&2 and 3&4 are iterations between the user and the interface. The user
edits the examples and the program and receives the outputs of the program on those inputs. The
user can also use “debug information”, intermediate execution values displayed by the interface, to
view the progression of loops (e.g., map), or track down the source of errors.
Synthesis queries In step 5, the user performs two actions: marking a subexpression 𝐶 , which
becomes a hole and will be replaced by the synthesizer; and marking an expresion to retain in
the result. These are precursors to constructing a query to the synthesizer. When the user clicks
Synthesize, the interface converts the current state of the session into the components of a query 𝑞1.
We define a synthesis query 𝑞𝑖 , where 𝑞𝑖 = (V𝑖 , 𝑆𝑖). Each V𝑖 is a vocabulary, or a set of terms,

functions and operators that can be used in the solution. 𝑆𝑖 is the set of specifications that should
hold for the synthesis result, a new completion 𝐶 ′. Since the user provides their specification on
the complete program (obtained by replacing 𝐶 with 𝐶 ′) the synthesis query contains a modified
specification that can be tested directly on any candidate completion𝐶 ′. Additionally, RESL’s initial
vocabulary V is enriched to fit the specific context of 𝐶 : any additional internal variables available
to𝐶 are added, and code written by the user is used as an additional expression of intent by adding
both new terms from 𝐶 that are not in V , and subexpressions of 𝐶 (including 𝐶 itself), to the
vocabulary.

In the example, step 5 generates a query
(
V1, 𝑆1

)
with:

𝑆1 =
{
retaininput.toString().length, 420 →?.map(i => input.toString().slice(0,i)) ["4","42","420"],

2020 →?.map(i => input.toString().slice(0,i)) ["2","20","202","2020"]
}

and input, toString(), length, input.toString() and input.toString().length added to V1.
Note that input-output examples are a type of predicate, and that they are bound to the sketch

the result will be assigned into. The user need not be aware of this binding, as the Arena performs
it automatically.
Synthesis loop At any point in the iterative interaction with the Arena, the user can send a
synthesis query 𝑞𝑖 , to be answered with a response 𝐶 ′, which the arena assigns into the sketch
remaining after removing 𝐶 and displays to the user. The user continues the iteration with the
Arena until they are happy with the program, either modifying the program and refining the
specification, or sending additional synthesis queries. At any point where all predicates entered
into the Arena hold for the current program, the user can accept it.

2.3 A Synthesizer Fit to RESL

Previous work has observed that many possible forms of synthesis specification, e.g., examples and
syntactic specifications, can be expressed as boolean predicates on programs. Specification with
general predicates was initially introduced as part of the Granular Interaction Model [Peleg et al.
2018b], where predicates similar to retain and exclude were found to be useful to users. However,
they were tested with a mock synthesizer but never implemented. Our goal is to create a synthesizer
for RESL, but this is not trivial: non-example predicates can interfere with the pruning mechanism of
enumerative synthesis, either making the search for a program explode or causing the specification
to become unsatisfiable.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 159. Publication date: November 2020.

159:6 Hila Peleg, Roi Gabay, Shachar Itzhaky, and Eran Yahav

𝜋420→["4","42","420"] 𝜋2020→["2","20","202","2020"] 𝜋𝑟𝑒𝑡𝑎𝑖𝑛 𝑖𝑛𝑝𝑢𝑡.𝑡𝑜𝑆𝑡𝑟𝑖𝑛𝑔().𝑙𝑒𝑛𝑔𝑡ℎ

input 420 2020 3

"" + input "420" "2020" 0

input + "" "420" "2020" 0

input.toString() "420" "2020" 2

input.toString().length 3 4 1

Fig. 3. Equivalence classes induced by specification 𝑆1. Observers (denoted 𝜋) compute the values used to

determine observational equivalence. The blue boxes denote equivalence classes when using only examples.

The red boxes denote the desired equivalence classes that separate input + "" and input.toString()
based on their contribution to the retain predicate and ensure input.toString() will not be discarded.

To support RESL, we implement an enumerating synthesizer with observational equivalence

(e.g., Albarghouthi et al. [2013]; Alur et al. [2017]; Wang et al. [2017a]). The goal of Observational
equivalence (OE) is to discard equivalent programs during enumeration, however true equivalence
is hard to check. OE redefines functional equivalence by limiting it to a few “important” inputs on
which programs need to be discernible, and the observational equivalence reduction (OE-reduction)
prunes the space by discarding programs equivalent to ones previously encountered. In PBE, the
inputs from input-output examples provided to the synthesizer are designated as “important”.
For example, when tested against the two inputs for examples in 𝑆1, ⟨420, 2020⟩, the program
input.toString() evaluates to ⟨’420’, ’2020’⟩. Likewise, the JavaScript programs input + "" and
"" + input also evaluate to ⟨’420’, ’2020’⟩. Of these, one (usually the first encountered) will be
kept as its representative in the enumeration, and the other discarded. Observational equivalence
is the state of the art in pruning a bottom-up enumeration, but we must modify it to suit the needs
of RESL.
Specification predicates and observational equivalence To support a varied range of predi-
cates in the user specification, we generalize observational equivalence beyond execution values
on inputs. 𝑆1 contains both examples and a retain predicate that requires the result to contain
input.toString().length. Notice that if we discard input.toString() and keep input + "" in the
earlier stages of enumeration, the synthesizer will no longer be able to satisfy 𝑆1 even though it
is satisfiable. This is because OE currently takes into account only the examples rather than the
entire specification. This can be seen in Figure 3 where the blue boxes represent the equivalence
classes created by examples alone.

We introduce the notion of observers in order to separate programs such as input.toString() and
input + "" according to non-example parts of the specification. Observers are functions defined
per-predicate that provide observational equivalence with values on which to operate—we replace
the outputs vector used for equivalence above with the results of observers, one for each predicate
in the specification. While for example-predicates the observer will still yield execution values over
the input, observers for other predicates such as retain will return a value designed to separate
programs based on the predicate they observe.

The observer for the non-example predicate, retaininput.toString().length, must indicate two things:
whether the retained expression is already part of the current program, and whether the current
program is a subexpression of the retained expression. The first ensures we regard two programs that
contain the retained expression as equivalent in regards to the retain predicate, and the second ensures
we don’t discard a subprogram needed to construct the retained expression. Since input.toString()
is a subexpression of input.toString().length, the observer value will encodewhich subexpression
it is. Figure 3 shows the observer results for retain as well.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 159. Publication date: November 2020.

Programming with a Read-Eval-Synth Loop 159:7

The observers for examples preserve the behavior of original OE, and the red boxes in Figure 3
show the refined equivalence classes representing the entire 𝑆1.
Synthesizing a completion to a sketch Examples provided by users in the RESL Arena indicate
the desired behavior of the entire program. However, since the user can create a hole anywhere
in the current program using the Arena, as in step 5 of Figure 1, the synthesizer is now tasked
with synthesizing a completion that, when assigned to the hole, behaves as specified. While the
synthesizer generates just the completion, and thereby tests the specification predicates only on
the completion, in order to yield a correct one it must consider the completed program, or in other
words, test a candidate completion when assigned to the sketch; the sketch is therefore bound to
the example predicates in 𝑆1.

In the alternate approach to solving the task in Section 2.1, the user first synthesizes the expression
for the range using modified examples: 420 → [1,2,3] and 2020 → [1,2,3,4], and then returns
the examples to their original state and attempts to map over the range expression. The user can
then append a dummy map, e.g., .map(i => input), which of course does not solve the problem,
and create a hole inside the map, asking the synthesizer to replace input with a completion that will
satisfy the examples.

Using observational equivalence when synthesizing an expression with which to replace input

means values are needed for the variable i. In the case of this map, we want to perform OE with
i mapped to each element of the arrays [1,2,3] and [1,2,3,4]. Leaving out any of these values
causes OE to misjudge the real runtime behvior of the expression, which could cause us to miss
non-equivalent expressions in the enumeration.

We therefore define observers for examples that can extend a given input valuation, yielding all
possible valuations for the inner context and returning a set of execution values instead of a single
value when comparing two possible completions. For this sketch inside map, the extended input
valuations will be:{

{input ↦→ 420, 𝑖 ↦→ 1}, {input ↦→ 420, 𝑖 ↦→ 2}, {𝑖𝑛𝑝𝑢𝑡 ↦→ 420, 𝑖 ↦→ 3},
{input ↦→ 2020, 𝑖 ↦→ 1}, {input ↦→ 2020, 𝑖 ↦→ 2}, {input ↦→ 2020, 𝑖 ↦→ 3}, {input ↦→ 2020, 𝑖 ↦→ 4}

}
Accepting an extended vocabulary Finally, the synthesizer for RESL must accept a parametricV
with each synthesis query, as each synthesis iteration may have a hole in a different position in the
program, adding new inner context variables, and be attempting to replace a different expression
that contributes new constants and functions to V beyond the base vocabulary.

2.4 Key Aspects

The key technical aspects presented in this paper are:
(1) Extended specifications: an interaction model allowing users to easily provide the synthesizer

with examples as well as other predicates, define a sketch, and edit the resulting program.
(2) Enriched synthesis vocabulary: the vocabulary given to the synthesizer is enriched with

program elements written by the user, not limiting synthesis to a predefined vocabulary.
(3) Generalizing equivalence: a new synthesis algorithm which generalizes Observational Equiv-

alence to allow syntactic predicates and predicates on intermediate states of the program.
(4) Input extension: a bottom-up solution for enumerating programs in an inner scope with new

variables, including inside higher-order functions.

3 PRELIMINARIES

Syntax-guided synthesis Syntax-guided synthesis (SyGuS) [Alur et al. 2015] accepts as input a
vocabulary V of constants, functions, and operations to define the possible space of programs. For
an element 𝑓 ∈ V , 𝑎𝑟𝑖𝑡𝑦 (𝑓) ∈ N denotes the arity of 𝑓 . We use the elements inV to construct ASTs

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 159. Publication date: November 2020.

159:8 Hila Peleg, Roi Gabay, Shachar Itzhaky, and Eran Yahav

bottom-up as follows: given an element 𝑓 with 𝑎𝑟𝑖𝑡𝑦 (𝑓) = 𝑘 and 𝑘 ASTs 𝑐1, . . . 𝑐𝑘 , 𝑓 (𝑐1, . . . , 𝑐𝑘) is a
new AST in the program space of V .
For an AST 𝑇 , ℎ𝑒𝑖𝑔ℎ𝑡 (𝑇) ∈ N denotes the height of the tree, where the height of constants and

variables is 0. Another measure for the size of 𝑇 is terms(𝑇) ∈ N, which denotes the number of
vocabulary terms (or AST nodes) in 𝑇 .
The subtree relation If expression 𝐸1 is a subexpression of 𝐸2, then the AST for 𝐸1 will be fully
embedded in the AST of 𝐸2. (Note that this is a property of expressions, but is not trivially a property
of full programs. Though the definition can be modified to fit statements and statement lists, this
paper will focus on expressions.) We denote this as 𝐸1 ⊆ 𝐸2.
Sketching and sketch trees Sketching (popularized by Sketch [Solar-Lezama 2008] and later
extended to include other partial programs, as in [Bornholt et al. 2016; Feldman et al. 2019; Smith
and Albarghouthi 2016]) is a variant of synthesis where the outermost part of the program is
already known, and only a portion of it (a hole) needs to be filled by the synthesizer. In this paper
we handle the specific case of a sketch with a single hole. A sketch tree is a an AST in which one
node is a hole node, denoting a missing subtree, and marked as ?.
Assigning to a sketch In order to attain a full program from a sketch, we need to assign a (non-
sketch) AST to the hole. We define the sketch assignment operation 𝑇 0△𝐶 , which accepts a sketch
tree𝑇 0 and a full completion𝐶 , and replaces the hole node in𝑇 0 with𝐶 . No renaming or modification
is performed on 𝐶 during the assignment—𝐶 is expected to match the specific context of the hole.

4 PREDICATES

This section describes using predicates on programs for communicating user intent to the synthe-
sizer. The way this is integrated into the RESL Arena will be described in Section 5.
Previous work [Peleg et al. 2018b] defines partial specification, including examples, as a set of

predicates on programs. The input-output examples the user enters in step 1 of Figure 1 are each
an instance of an example-predicate, and the retain operation in step 5 is also a predicate.
Formally, every interaction with the synthesizer is comprised of a set of predicates of type

Tree → Boolean. Theoretically [Peleg et al. 2018a], any decidable predicate on programs (preferably
quickly decidable) can be used. Peleg et al. [2018b] offer an interaction model where predicates
specify syntactic features of the program, which they tested with no implemented synthesizer. In
this work, we offer predicates that are both useful and easily instantiated via a point-and-click
interface on the program. Their implementation is detailed in Section 7.

RESL supports predicates from several families of predicate schemas:
Input-output predicates: as in PBE, assert that running the program tree on a specific input
valuation 𝜄 will yield a concrete output 𝑜 . While the user enters a general 𝜄 → 𝑜 that specifies
the entire progam, they may also create a sketch 𝑇 0, which means that the synthesis query must
specify the behavior of the synthesized completion 𝐶 . To this end, we define 𝜄 →𝑇 0 𝑜 as follows:

(𝜄 →𝑇 0 𝑜) (𝐶) ≜
(
J𝑇 0△𝐶K(𝜄) = 𝑜

)
In a session, 𝑇 0 will be the sketch tree created when the user defines a hole in the current program.
E.g., in step 5 of Section 2.1, the user creates a hole resulting in the sketch tree 𝑡0 = ?.map(i =>

input.toString().slice(0,1). The first user-provided example in step 1 will be instantiated for
the synthesizer as {𝑖𝑛𝑝𝑢𝑡 ↦→ 420} →𝑡0 ["4","42","420"]. If no hole is created, then the entire
program is to be synthesized, and {𝑖𝑛𝑝𝑢𝑡 ↦→ 420} →? ["4","42","420"] will be added to 𝑆 .
Retaining a subexpression: asserts that a certain subexpression must appear in the program tree.
Given a full subtree 𝐸, we define retain𝐸 as follows:

retain𝐸 (𝐶) ≜
(
𝐸 ⊆ 𝐶

)
Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 159. Publication date: November 2020.

Programming with a Read-Eval-Synth Loop 159:9

When used in a session, 𝐸 is some subexpression of the current program viewed by the user. Any
retain predicates will only be tested against the completion 𝐶 , not the full program 𝑇 0△𝐶 .
For example, in step 5 of Section 2.1, the retain action instantiates a retaininput.toString().length

predicate in the synthesis query, ensuring that the result in step 6 contains the desired expression.
Excluding a subexpression: the complement of retain, exclude asserts that a certain subexpression
does not appear in the program tree. Given a full subtree 𝐸, we define exclude𝐸 as follows:

exclude𝐸 (𝐶) ≜
(
𝐸 ⊈ 𝐶

)
In a session, 𝐸 is some subexpression of the current program viewed by the user. Like retain, exclude
is only tested on the completion, not the entire program.
In step 5 of Figure 1, the user could also specify exclude1, meaning this numeric literal should

not appear in the result (this would rule out the result returned in step 6).
Requiring and prohibiting subexpression types: asserts that for a given input, evaluation of
the completion 𝐶 will either have (require) or not have (prohibit) a subexpression of type 𝜏 . This is
useful both to suggest a desired algorithm and to control type coercion in JavaScript. We define:

require(𝜏,𝜄) (𝐶) ≜ ∃𝐸 ⊆ 𝐶.𝑡𝑦𝑝𝑒 (J𝐸K(𝜄)) = 𝜏 prohibit(𝜏,𝜄) (𝐶) ≜ ∀𝐸 ⊆ 𝐶.𝑡𝑦𝑝𝑒 (J𝐸K(𝜄)) ≠ 𝜏
Each require and prohibit is defined for a single input 𝜄. However, in order to make them easier to
enter, they are presented to the user as a general specifications for all inputs, and when composing
𝑆 the Arena, described in the next section, adds the require or prohibit for each 𝜄 →𝑇 0 𝑜 in 𝑆 .

5 THE RESL ARENA

Communication with the synthesizer requires both the editing of predicates, and delicate tree
operations. While neither is impossible for a human user to do unaided, they are not convenient. As
such, we introduce the RESL Arena, with which the user interacts. The interaction with the Arena
is itself an iterative process with the dual purpose of providing the user with information about the
current state of the program and constructing the synthesis queries 𝑞𝑖 = (V𝑖 , 𝑆𝑖), which are the
form of communication between the Arena and the synthesizer, and are defined in Section 6.

The Arena is meant to give users the familiar look-and-feel of a REPL, preserving the important
feature of REPLs, the speed of iteration [Burckhardt et al. 2013] that allows the programmer to
determine whether part of the program behaves as desired in a piecewise manner. The RESL
Arena extends this by executing the program on multiple inputs at once, displaying results and
intermediate values, and providing a REPL-like interface interface to the synthesizer.

Figure 4 shows the components of the RESL Arena, used in the interaction described in Figure 1.
We now describe the actions supported by the Arena.
Entering a program The user can enter a new program (or edit a program from the history of the
session) using the prompt at the bottom left. This becomes the active program.
Adding and modifying examples The user can add new input-output pairs in the Arena, to
evaluate the program with and use as 𝜄 → 𝑜 for the synthesizer, as seen in Figure 4(c). Existing
examples can be removed or modified.
Evaluating and testing A program entered into the Arena is evaluated on every input in the
provided examples, the input assigned to the input variable. Outputs for every input are printed
for the user (seen in Figure 4(a)). If the output matches the expected output, a green checkmark
is shown, otherwise, the expected output is shown. Changes to the examples are automatically
re-evaluated without re-entering the active program.
Viewing debug information While a REPL is not a suitable environment for Live Program-
ming [Lerner 2020; Omar et al. 2019], we still wish to show the user a breakdown of the internals of
an evaluated expression. Therefore, for every subexspression of the full program, the Arena exposes

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 159. Publication date: November 2020.

159:10 Hila Peleg, Roi Gabay, Shachar Itzhaky, and Eran Yahav

(a)
(b)

(c) (d)

Fig. 4. The RESL Arena. (a) the full Arena window after step 4 in Figure 1, (b) designating a subprogram as

the hole to be fixed by the synthesizer, (c) adding an input-output example, and (d) the user viewing debug

information on a subexpression.

every intermediate value in the program evaluation for every input. In the case of internal loops,
e.g., the lambda inside the filter function, every execution context is shown. Figure 4(d) shows the
debug information for the subexpression input.toString() in the context of {𝑖𝑛𝑝𝑢𝑡 ↦→ 420, 𝑖 ↦→ 1}.
Scrolling down will show other valuations, e.g., {𝑖𝑛𝑝𝑢𝑡 ↦→ 420, 𝑖 ↦→ 3}, {𝑖𝑛𝑝𝑢𝑡 ↦→ 2020, 𝑖 ↦→ 1}.
Creating a hole The user can mark a subexpression as the part of the program to be replaced in a
synthesis operation. In Figure 4(b), the user is asking the Arena to decompose the current program
into a sketch tree (shown in purple in Figure 4(d)) and a completion (shown in black).
Exclude and retain The user can mark a subexpression to exclude or to retain when calling the
synthesizer. These will be instantiated as a predicates and appended to the synthesis query.
Restricting subexpression types The user can require or prohibit a specific type to be present in
the intermediate state of the synthesized completion. I.e., one of its subexpressions must—or must
not, respectively—be of this type. They can be seen in the bottom right of Figure 4(a). In the arena,
these constraints are represented as general constraints, as opposed to the way they are formally
defined in Section 4. Their conversion into the formal predicate is detailed in Section 6.
Invoking the synthesizer Once the user has provided specifications, they can invoke a call to the
synthesizer using the Synthesize button, in the lower right corner of Figure 4(a). The following
section details how the Arena transforms the user-facing state into a synthesis query.

This synthesis query is then sent to the synthesizer. The completion𝐶 ′ returned by the synthesizer
is assigned into the hole and𝑇 0△𝐶 ′ is displayed as the new active program in the programs display.
Subexpression and type constraints (retain, exclude, require type, and prohibit type) are discarded
upon receiving a new program. Examples are preserved until changed by the user.

6 SYNTHESIS QUERIES

In this section we describe the interface between the Arena and the synthesizer, which is demon-
strated in step 5 in Section 2.1. In each synthesis call, a separate query is sent to the synthesis
back-end. Each synthesis query is stateless, providing all needed information to the synthesizer.
Synthesis query To initiate a synthesis step, the Arena constructs a synthesis query 𝑞𝑖 = (V𝑖 , 𝑆𝑖)
from the Arena’s current state. V𝑖 is the synthesis vocabulary, and its construction will be detailed
later in this section. 𝑆𝑖 is the modified specification.

Creating the query requires the sketch 𝑇 0, the program outside the hole created in the Arena. If
the user created no hole, 𝑇 0 will ? (a hole node). Then examples, which are specified in the Arena

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 159. Publication date: November 2020.

Programming with a Read-Eval-Synth Loop 159:11

for the full program, are bound to the hole in 𝑇 0 by turning each 𝜄 → 𝑜 to 𝜄 →𝑇 0 𝑜 before adding it
to 𝑆𝑖 . Subexpression type constraints require and prohibit are bound to the inputs from any 𝜄 →𝑇 0 𝑜 .
Remaining predicates are simply added to 𝑆𝑖 .
Synthesis result A successful result of a synthesis step is an AST 𝐶𝑖 such that 𝐶𝑖 |= 𝑆𝑖 . The next
active program would consequently be constructed by the Arena by composing 𝑇 0

𝑖 △𝐶𝑖 .
The synthesizer returns a result as soon as it finds a satisfying expression. If the timeout expires

before a result could be found, the synthesizer fails with an empty result denoted ⊥.
Extending the synthesis vocabulary SyGuS is a variant of program synthesis where the synthe-
sizer is provided with both a specification and a grammar defining the search space as inputs. As
V𝑖 changes at every iteration, RESL is a SyGuS synthesizer.

The size of a synthesizer’s vocabulary greatly effects the size of the search space. In a bottom-up
enumeration, limiting the vocabulary also limits the available constants. As a result, V may be
too limited for queries in a real-world development session. Additionally, V is defined for the
outer-most scope, but sketching may have introduced new inner scopes.

RESL tackles all of these limitations by extending the vocabulary: the Arena incorporates elements
of 𝐶 , the subexpression removed from the hole, and the hole’s context into V𝑖 . This preserves any
special constants or functions not in the base vocabulary that are part of the user’s intent.

We define a vocabulary extension V(𝐶) ∪ 𝑒𝑥𝑡 (𝑇 0) that is added toV as follows:

(1) V(𝐶) is a vocabulary set comprising elements of 𝐶:
- All node labels in 𝐶: constants, variables, operators, and functions with their arity in 𝐶 .
- All subtrees𝑇 ⊆ 𝐶 , with𝑎𝑟𝑖𝑡𝑦 (𝑇) = 0. This is not strictly necessary, as they can be recomposed
from the node labels of 𝐶 , but this prioritizes them in a bottom-up enumeration.

(2) 𝑒𝑥𝑡 (𝑇 0) is the context of the hole, comprising the variables whose declaration is on the path
from the root of 𝑇 0 to the hole node in the sketch tree.

The RESL synthesizer prioritizes the elements of V(𝐶) ∪ 𝑒𝑥𝑡 (𝑇 0) over elements of V in the
synthesis process, making it faster to enumerate programs that are similar to 𝐶 when replacing 𝐶 .

In the following sections, we describe the implementation of a synthesizer that supports a query
of the format

(
V, 𝑆

)
for 𝑆 comprising predicates described in Section 4.

7 SYNTHESIZER OVERVIEW

In this section, we describe the implementation of RESL synthesizer. This synthesizer supports
synthesis queries of the format described in Section 6. While few existing state-of-the-art synthe-
sizers offer sketching as part of their specifications, no synthesizers handle the remaining RESL
predicates1. For the synthesizer to be correct, it needs to accept general predicates (Section 4) and
input-output examples that refer to the entire program, while synthesizing the completion to the
sketch. To do this, we tackle several conceptual obstacles addressed in this section.
We begin by motivating our choice of a bottom-up enumeration and introduce pruning with

observational equivalence. Next, we extend OE to observers, predicate-specific value generators,
rather than execution values. We also present an optimization that allows for more pruning using
some predicates. We then describe the challenge of preserving OE when synthesizing completions
to a sketch, and our approach to it. Finally, we observe a limitation of OE that poses an obstacle to
handling data-dependent loops (e.g. reduce()).

1The syntactic predicates proposed by [Peleg et al. 2018b] were never implemented in a synthesizer.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 159. Publication date: November 2020.

159:12 Hila Peleg, Roi Gabay, Shachar Itzhaky, and Eran Yahav

𝑇 0 = input.sort((a,b) => ?)

𝑆 =

{
[’aba’,’efg’,’bcd’] →𝑇 0 [’aba’,’bcd’,’efg’],

retaina[a.length - 1], 𝑒𝑥𝑐𝑙𝑢𝑑𝑒a[0]

}
Fig. 5. The running example described in Example 7.1. During the enumeration described in Section 7.2,

parts of the desired program are discarded (black nodes) and some are never constructed (grey nodes).

Consequently, the retain element of the specification cannot be realized without an observer for it.

Running example We demonstrate the key aspects of our approach on the following example:

Example 7.1. a user is using RESL to solve the competitive programming exercise “Sort by Last
Char”. They use the Arena to create the sketch 𝑇 0=input.sort((a,b) => ?), and provide the
specification 𝑆 shown in Figure 5, which is then sent to the synthesizer along with a vocabularyV .

The sort method takes a comparator that encodes the relationship between elements using the
sign of its return value. One correct solution for this task is input.sort((a,b) => a[a.length -

1].localeCompare(b[b.length - 1])). The AST of this target program is also shown in Figure 5.

7.1 Bottom-Up Synthesis with Observational Equivalence

We now explain the need for bottom-up synthesis for the RESL synthesizer, introduce observational
equivalence [Albarghouthi et al. 2013; Udupa et al. 2013], the existing state-of-the-art in pruning
the search space for bottom-up synthesis, and our correctness theorem.
Why bottom-up An enumerating synthesizer can construct programs top-down, starting from the
root and expanding, or bottom-up, constructing larger programs from smaller ones. A RESL synthesis
query contains two elements which need to be handled by the synthesizer, the specification that
can include non-example predicates, and the extended vocabulary that can include any language
element the user pleases. We considered both approaches, and found that when handling the new
specification predicates, bottom-up enumeration allows us to prune the space more effectively, and
that it is crucial to handling extended vocabularies.

Top-down synthesizers rely on semantic rules for propagating the example through an AST node,
creating specification for its children. The ability of the RESL Arena to extend the vocabulary means
that a top-down synthesizer would need to contain such rules for every function and operator in the
language and any imported API. In contrast, bottom-up synthesis relies on executing expressions,
which means an unfamiliar function can simply be executed.

Additionally, top-down enumeration can only test programs for syntactic elements once they
are fully generated: excluded expressions can only be eliminated once the entire excluded tree has
been enumerated, meaning it will be enumerated again and again within many other programs.
Retained expressions can be added to the vocabulary to optimize their creation (as they can be in
bottom-up enumeration), but since they can be non-trivial ASTs, their semantics are not part of the
synthesizer, which means the synthesizer cannot deduce whether or not they fit as a missing child,
and will always have to try them.
Synthesis with observational equivalence In a bottom-up enumeration, we compose smaller
programs to create bigger programs. This means the most effective form of program pruning is
to discard programs as early as possible, reducing the number of larger programs that would be
constructed. An effective way to reduce the size of the search space is to skip programs that are
equivalent to ones already seen. However, checking whether two programs are equivalent over
all inputs is generally undecidable. Observational equivalence redefines functional equivalence

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 159. Publication date: November 2020.

https://www.codewars.com/kata/57eba158e8ca2c8aba0002a0
https://www.codewars.com/kata/57eba158e8ca2c8aba0002a0

Programming with a Read-Eval-Synth Loop 159:13

by limiting it to a few “important” inputs on which programs need to be discernible. In PBE, the
inputs from input-output examples provided to the synthesizer are designated as “important”.

For example, given the PBE specification for isUpper ⟨’Kirk’→false, ’sulu’→false, ’KHAN’→𝑡𝑟𝑢𝑒⟩,
the programs input.length and 4 are observationally equivalent, since they both map the input
vector ⟨’Kirk’, ’sulu’, ’KHAN’⟩ to ⟨4, 4, 4⟩. Under that assumption, substituting 4 for input.length
is correct since it is correct for all values in the specification. If this does not align with user intent,
they can always provide an additional example with a string of different length. Unlike equivalence
reductions based on semantic information (e.g. [Feser et al. 2015; Smith and Albarghouthi 2019]),
observational equivalence makes decisions solely based on execution values, making it lightweight
to maintain, requiring only the ability to execute programs. A more formal definition appears in
Appendix A.
The correctness of observational equivalence We now describe the requirements for the cor-
rectness of observational equivalence. We build upon the correctness proposition by Albarghouthi
et al. [2013] and generalize it. Notice that the correctness standard is that of a partial specification.
The full definitions and proofs appear in Appendix B.

Let us denote LVM as the full space of programs that can be constructed from vocabulary V .
Additionally, let us denote LVM𝑂𝐸 as the OE-reduced space of programs constructed from V in an
enumeration over a given set of inputs.

Theorem 7.2. Given a program𝑚 ∈ LVM and a specification (set of predicates) 𝑆 , if every 𝑝 ∈ 𝑆
holds for𝑚 then there exists𝑚′ ∈ LVM𝑂𝐸

that also satisfies every 𝑝 ∈ 𝑆 .

This theorem states that as long as there is at least one program satisfying all specifications, we
will find one. It does not matter which one, as the specification is the only criterion for correctness.
Remaining challenges To synthesize the completion to the synthesis query

(
V, 𝑆

)
in Example 7.1

with an OE-reduced enumeration, we must address two challenges. First, sinceV now contains
inner-context variables a and b, in order to enumerate bottom-up, we need to find out the running-
values of the inner context variables. Essentially, since a and b are loop variables, they are assigned
multiple values, and we need them all for OE to be correct. Second, wemust ensure the OE-reduction
does not make the general predicate specification 𝑆 unsatisfiable.

The following subsections will address these challenges, beginning with the predicates.

7.2 Synthesis with General Predicates

Section 4 details the predicates supported by RESL.
In Figure 5, the specification includes exclude and retain in addition to the one example predicate:

the solution should contain a[a.length - 1] and should not contain a[0].
General predicates and the OE-reduction Predicates in the specification can interfere with the
standard OE-reduction. In our example, assume the vocabulary contains the constants 1 and 2.
Programs are enumerated in ascending order of height, so the program 2 is encountered long before
a.length - 1. When evaluated on the valuations for input, a, and b, both programs yield the value
vector ⟨2, . . . , 2⟩ (all strings are of length 3) and would therefore be deemed equivalent.

Under an OE-reduction, only one of these programs will be kept. Since it is usually the shortest
program, a.length - 1 will be discarded. As shown in Section 7.1, when dealing with values
alone, this decision is correct, as any program that contains a.length - 1 as a subexpression
is observationally equivalent to the same program that uses 2 instead. However, since the new
specification contains the requirement that a[a.length - 1] be a part of the solution, this form of
enumeration will not be able to realize it.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 159. Publication date: November 2020.

159:14 Hila Peleg, Roi Gabay, Shachar Itzhaky, and Eran Yahav

𝜋 𝑎↦ "𝑎𝑏𝑎 ",𝑏↦ "𝑐𝑓𝑔 " →⊥ 𝜋 𝑎↦ "𝑐𝑓𝑔",𝑏↦ "𝑏𝑐𝑑" →⊥ 𝜋𝑟𝑒𝑡𝑎𝑖𝑛 𝑎.𝑙𝑒𝑛𝑔𝑡ℎ 𝜋𝑟𝑒𝑡𝑎𝑖𝑛 𝑏.𝑙𝑒𝑛𝑔𝑡ℎ 𝜋𝑒𝑥𝑐𝑙𝑢𝑑𝑒 𝑎[0]

a 'aba' 'cfg' 2 0 2

a.substr(0,3) 'aba' 'cfg' 0 0 0

b 'cfg' 'bcd' 0 2 0

b.length – 1 2 2 0 1 0

2 2 2 0 0 0

a.length – 1 2 2 1 0 0

a.length 3 3 1 0 0

a.length + 0 3 3 1 0 0

Fig. 6. Partition into equivalence classes based on observers for examples, retain and exclude. We modify

Example 7.1 slightly to show retain of two smaller expressions, a.length - 1 and b.length - 1, rather than
the full a[a.length - 1]. (Examples used here for synthesizing a completion to a sketch are a subset of the

correct example set, which is explained in Section 7.3, and since their output is not needed it is denoted ⊥.)

Figure 5 shows the expected solution. The box denotes the specified required expression. Both
a.length - 1 and b.length - 1 are deemed equivalent to 2, and thus discarded (denoted with a
black circle in the figure) from the enumeration, meaning no expression containing them can be
constructed (denoted with a grey circle). This makes the rest of the enumeration will then fail to
satisfy the retain of a[a.length - 1] (the boxed expression). The synthesizer will therefore produce
no solution for 𝑆1, even though a target program that satisfies it occurs in the unreduced space.
Observers To address this challenge, we extend the existing definition of observational equivalence,
replacing the hard-coded use of execution values in determining equivalence with generic observers,
a customized discriminator between programs that is defined per family of predicates.

Definition 7.3 (Observer). Let every predicate 𝑝 be associated a function 𝜋𝑝 : P → 𝐾 , called its
observer. It maps programs to observations from some range 𝐾 , by which observational equivalence
is to be determined. Intuitively, if 𝜋𝑝 (𝑚1) ≠ 𝜋𝑝 (𝑚2), then 𝑚1 and 𝑚2 are not observationally
equivalent.𝐾 can consist of any number of possible outcomes—computed values, errors, side effects,
etc.

For the input-output predicates 𝜄 → 𝑜 , the observers are 𝜋𝜄→𝑜 (𝑚) = J𝑚K(𝜄); these will be futher
generalized in Section 7.3.

We require two properties of observers:
(O1) Interchangeability: For any two programs𝑚1,𝑚2, if 𝜋𝑝 (𝑚1) = 𝜋𝑝 (𝑚2), then for any sketch

𝑇 0, it also holds that 𝜋𝑝 (𝑇 0△𝑚1) = 𝜋𝑝 (𝑇 0△𝑚2).
(O2) Consistency: For any two programs𝑚1,𝑚2, if 𝜋𝑝 (𝑚1) = 𝜋𝑝 (𝑚2), then𝑚1 |= 𝑝 ⇐⇒ 𝑚2 |= 𝑝 .

O1 ensures that two programs that are observed to be the same will be interchangable within
any larger program under the same observer. This trivially holds for example predicates 𝜄 → 𝑜 ,
and was the basis for the corretness proposition in [Albarghouthi et al. 2013]—as long as the target
language does not admit destructive updates. This assumption is not specific to our framework; it
is required for any operational semantics-based form of OE.
Figure 6 shows the values of observers for some predicates for Example 7.1: examples (whose

outputs are unknown, as they were propogated into a sketch), retain, and exclude). The observers

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 159. Publication date: November 2020.

Programming with a Read-Eval-Synth Loop 159:15

for examples (blue boxes) separate programs based on their execution values, as a standard OE-
reduction would, whereas the yellow and purple boxes separate programs based on the retain and
exclude predicates respectively. The red boxes indicate the final separation into equivalence classes.
For example, the observer values for retain allow us to separate 2 and a.length - 1 that are merged
in a standard OE-reduction.
We provide guidelines for defining observers for specification predicates in Appendix B, and

show the correctness of OE holds so long as the observers adhere to the two required properties
O1 and O2. We now extend our available observers beyond the one for examples.
Observing predicates In Figure 6, we can see that plain observational equivalence (the blue boxes
only) found 2 and a.length - 1 equivalent, and would place them in the same equivalence class. To
separate them, we replace the outputs vector used for equivalence with the results of observers,
one for each predicate in the specification.
The observer for retain, like the observer for examples, is aimed at not losing partial programs

that do not yet satisfy the predicate. Programs that satisfy a retain predicate can be constructed
from programs that do not satisfy it, which means that to satisfy them we must ensure that we do
not lose their subprograms in the course of the enumeration.
Likewise, for exclude we are interested in this behavior, as it ensures we can create something

that is equivalent to the excluded expression by all other predicates, if such a program exists in the
space.
Input-output observers already include this behavior—the result of the predicate is not part of

the observer, and intermediate values needed to construct the final output value on which the
predicate is tested are separated into different equivalence classes.

To replicate this behavior for retain and exclude, we define its observer like so:

Definition 7.4 (Retain and exclude observers). For 𝑝=retain𝐸 and 𝑝=exclude𝐸 , retaining or excluding
subtree 𝐸, we assign each node in 𝐸 an ordinal number, where the root is 1 and all other nodes are
assigned a value in the range 2..𝑡𝑒𝑟𝑚𝑠 (𝐸). We define 𝜋𝑝 (𝑚) = 1 if 𝐸 ⊆ 𝑚, 𝜋𝑝 (𝑚) = 𝑖 if𝑚 is equal
to the subtree at node 𝑖 , and 0 otherwise.

Consider one of the retained expressions in Figure 6, a.length. The expression a is a subexpression
of a.length, so the observer encodes its position in the AST. The expression 2 is not a subexpression
of a.length or vice versa, so the observer value is 0. For a.length - 1, for which a.length is a
subexpression, the observer value will be 1, encoding that it is included. This separates 2 and
a.length - 1, which are equivalent under examples alone, into two equivalence classes.
Observing require and prohibit requires two values: the observer 𝜋require(𝜏,𝜄) (𝑚) includes both

the value of its predicate require(𝜏,𝜄) (𝑚) and the type of program𝑚 when evaluated with input 𝜄.
Observing prohibit(𝜏,𝜄) is preformed in the same way.
Since the purpose of observers is to create greater separation between programs, they increase

the number of equivalence classes and number of programs in the space. While this is unfortunate,
it is necessary for correctness, and our experiments (Section 8.1) show this increase is tractable.

The correctness proofs for these observers are in Appendix E.
Negatively-Stable Predicates Moreover, some general predicates are amenable to further opti-
mization, allowing for a reduction of the space to counteract the separation caused by the observer.
E.g., our specification also contains 𝑒𝑥𝑐𝑙𝑢𝑑𝑒a[0], denoting that a[0] may not appear in the resulting
completion, ruling out overfitted candidates. Once a program contains a[0] and fails the predicate,
any program composed from it will also contain a[0] and also fail the predicate. We call such
predicates negatively-stable predicates, and prune by discarding any candidate program that fails
to satisfy at least one negatively-stable predicate in the specification. This is safe to do, because

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 159. Publication date: November 2020.

159:16 Hila Peleg, Roi Gabay, Shachar Itzhaky, and Eran Yahav

any larger program that would have been constructed using it would also violate the specification.
Of the predicate families available in the RESL Arena, exclude and prohibit are negatively-stable,
whereas examples, retain and require are not.

The correctness of further pruning the space according to negatively-stable predicates is proved
in Appendix E.3.

7.3 Synthesis inside a Sketch

In this subsection, we explain how to extend OE for synthesizing completions to sketches. So far,
we assumed that our synthesizer is capable of providing values for the inner variables a and b in
Example 7.1, and now we must revisit this assumption. We first explore the problem that arises
from bottom-up synthesis in an inner context, and then describe our solution.
A naive solution would be to use the results of the completed program 𝑇 0△𝐶 as the values for

the OE-reduction. The problem is that subprograms of the correct completion are meaningless as a
completion themselves, and can cause the synthesizer to fail even when the correct solution exists
in the full space (i.e., be incorrect according to Theorem 7.2). To illustrate, in Example 7.1, a.length
and b.length are both subexpressions of the sort comparator we wish to synthesize. However, each
is meaningless as a completion on its own: they will only return 0 or a positive number that does
not take the second argument into account at all, resulting in a nonsensical sort. In addition, if
all strings in the array are non-empty, both will result in the same nonsensical sort order, leading
observational equivalence to find them equivalent. In a statically-typed language, sub-expressions
may also be of an incorrect type for the hole, making this approach unfeasable from the get-go.

Even though each completion 𝐶 enumerated is not a full program, OE is still necessary to keep
the process tractable. Since𝐶 cannot be assigned into the sketch, we need to evaluate each candidate
completion in its apropriate inner context. In Example 7.1 this requires values for a and b. These
values are not part of the input valuation in the examples in 𝑆 . Moreover, since the hole of 𝑇 0 is
inside the sort function, a and b obtain multiple values per execution, which may differ between
different completions𝐶 , as the execution of sort depends on the return value of the sorting function.
We must choose values for the variables that represent states that are reachable when executing
with the inputs from 𝑆 , because not representing a reachable state may cause us to miss programs.
Observers and sketches In order to enumerate the completions, we add the new variables to the
execution context, so that we can perform OE over the new extended vocabulary for the scope of
the hole V∪𝑉 , where 𝑉 = 𝑒𝑥𝑡 (𝑇 0) (as defined in Section 6). In the case of a sketch that simply
adds a new variable (e.g., let x = 𝑒𝑥𝑝𝑟; ?), we can assign a value to this variable by executing
the partial program up to the declaration. In this case there will be exactly one value of x for each
value of input, and we can trivially add it to the input valuation.

In the general case, we define context extension for an input valuation 𝜄 inside a sketch𝑇 0 (denoted
𝑒𝑥𝑡𝑒𝑛𝑑 (𝜄,𝑇 0)), which is a set of new valuations in which all variables in 𝑉 have values, and is a
subset of the possible set of valuations under which a completion 𝐶 will be evaluated over when
executing J𝑇 0△𝐶K(𝜄). The full definition is found in Definition C.1. Ideally, 𝑒𝑥𝑡𝑒𝑛𝑑 (𝜄,𝑇 0) is not only
a subset, but includes all values over all possible executions of any 𝑇 0△𝐶 . We call this a complete

extension. To prove OE inside sketches correct, extensions must be complete.
For example, evaluating sort, the function is invoked for every pair of elements tested by the

implementation. This means the actual set of pairs depends on the return values of previous calls.
To get a complete extension, we consider all element pairs, as that will cover every possible return
value of the function parameter and therefore every possible sorting order attempted. Then, when
the observer is computed on the completion, this means separating comparator functions by their
values rather than the sort order they induce.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 159. Publication date: November 2020.

Programming with a Read-Eval-Synth Loop 159:17

We define several useful complete extensions for JavaScript:
extend (𝜄, let x = rhs; ?) =

{
𝜄 ∪ {𝑥 ↦→ J𝑟ℎ𝑠K(𝜄)}

}
extend (𝜄, lhs.map((e,idx,arr) => ?)) = extend (𝜄, lhs.filter((e,idx,arr) => ?)) ={

𝜄∪{𝑎𝑟𝑟 ↦→ JlhsK(𝜄), 𝑖𝑑𝑥 ↦→ 𝑗, 𝑒 ↦→ Jlhs[j]K(𝜄)}
�� 𝑗 ∈ 0:|𝑙ℎ𝑠 |

}
In JavaScript, idx and arr can be omitted from the declaration of the function parameter, and in
other languages they might not be available at all. However, the definition of 𝑒𝑥𝑡𝑒𝑛𝑑 stays the
same, only omitting the dropped parameters from the final set, which means some elements may
converge. This extension can be used for other higher-order functions that perform independent
iterations on the input array’s elements, such as groupBy, maxBy, etc. We also define:
extend (𝜄, lhs.sort((a,b) => ?)) =

{
{𝑎 ↦→ Jlhs[j]K(𝜄), 𝑏 ↦→ Jlhs[k]K(𝜄)}∪𝜄 | 𝑗, 𝑘 ∈ 0 : |𝑙ℎ𝑠 |, 𝑗 ≠ 𝑘

}
Depending on the implementation of sort there may be a smaller complete extension, but since at
worst this is an overapproximation, it will not cause us to lose programs.

If scopes adding context variables are nested, extend is computed by first computing the extension
of the outer scope, then for each member of the extension the process is repeated for the inner
scope. E.g., for the sketch input.map(l => l.filter(e => ?)), the extension for the hole will be:

𝐼 = 𝑒𝑥𝑡𝑒𝑛𝑑 (𝜄, input.map(l => ?))
extend (𝜄, input.map(l => l.filter(e => ?))) =

⋃
𝜄′∈𝐼

extend (𝜄 ′, l.filter(e => ?))

Applying OE where it matters Once we have the ability to extend the input context, yielding
all reachable valuations for new variables, the OE-reduction is then performed by evaluating
the completion on the extended inputs. To do this, we expand the definition for observers of
input-output examples from that given in Section 7.2:

Definition 7.5 (Input-output example observer). For an input-output predicate 𝜄 →𝑇 0 𝑜 we define
the observer 𝜋𝜄→

𝑇 0𝑜 as a set of valuations mapped to their execution results:
𝜋𝜄→

𝑇 0𝑜 (𝑚) = {𝜎 ↦→ J𝑚K(𝜎) | 𝜎 ∈ extend (𝜄,𝑇 0)}

Notice that while the observer is evaluated on the completion, separating programs based on all
possible values for the variables, the predicate 𝜄 →𝑇 0 𝑜 evaluates and tests the completed program
𝑇 0△𝐶 . In our example, values for a and b allow us to perform the OE-reduction while enumerating
the body of the function parameter, so long as we check for the specification on the full completed
program.
Higher-order functions as non-user sketches The ability to fill in sketches through synthesis is
useful not only when the user explicitly specifies them, but also when higher-order operations are
part of the synthesis vocabulary. In a bottom-up enumeration, a function application is set as the
root node of children that had already been enumerated, but since the vocabulary for the function
parameter is different (namely one that includes the function’s arguments, and perhaps excludes all
variables outside the function’s scope) it needs to be enumerated separately. Additionally, it would
not do to simply enumerate all functions for 𝑘 arguments once and reuse them, since without
values for the new variables this enumeration would not be able to prune its space, and with values
from a different context the pruning will be incorrect. In such cases, the synthesis loop is used
to essentially enumerate sketches: observational equivalence is employed for all sub-components
except for the function bodies, which remain as holes. For example, when enumerating map, some
list lhs to be mapped will be drawn from the expressions that have already been enumerated, and
applying map will create the sketch lhs.map(?). These holes are then filled by an inner synthesis
sub-task that generate sketch completions, as elaborated in this section. This is the technique used
to synthesize list and dictionary comprehensions by Ferdowsifard et al. [2020].

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 159. Publication date: November 2020.

159:18 Hila Peleg, Roi Gabay, Shachar Itzhaky, and Eran Yahav

Table 1. The impact of non-example predicates on the size of the search space. 𝑆1 = E, 𝑆2 = E ∪ 𝑁𝑆𝑃 ,

𝑆3 = E ∪ 𝑛𝑜𝑛𝑁𝑆𝑃 , 𝑆4 = E− ∪ 𝑁𝑆𝑃 ∪ 𝑛𝑜𝑛𝑁𝑆𝑃 . E is a set of 𝜄 → 𝑜 predicates. E−⊂E is insufficient to reach

the target program. For each specification set, progs measures the number of programs enumerated until the

result r was reached. Enumeration order is fixed, so changes in progs attest reduction or inflation of the space.

Notice that the space enumerated for 𝑆1 is the original OE-reduced space from [Albarghouthi et al. 2013].

Completed online signifies the popularity of the benchmark task on codewars.com. ℎ(r) is a shorthand for

ℎ𝑒𝑖𝑔ℎ𝑡 (r) (recall that it is zero-based), and 𝑡 (r) for 𝑡𝑒𝑟𝑚𝑠 (r).

completed
online

𝑆1 𝑆2 𝑆3 𝑆4

benchmark name difficulty ℎ (r) 𝑡 (r) |E | progs |𝑆2 | progs |𝑆3 | progs |E− | |𝑆4 | progs
isUppercase 1 13,296 2 4 4 2352 6 53 5 2458 2 5 56
keepHydrated 1 36,151 2 4 3 12414 5 4398 4 12481 2 5 3694
removeFirstLastLetter 1 60,170 3 7 5 15218 7 12081 7 22543 2 6 2369
getLastChar 2 428 2 6 4 123 5 79 5 124 2 4 52
isNegativeZero 2 2,419 2 5 3 110 5 80 4 113 2 5 83
isSquare 2 82,712 3 7 6 8674 8 7444 7 8702 4 7 7212
nerdyString 2 970 2 5 2 4574 3 3088 3 4816 1 3 1525
numDecimalDigits 2 3,510 2 4 3 7083 4 3034 4 7373 2 4 2993
rotateString 3 3,057 2 7 2 358 3 226 3 413 1 3 96
decToHex 4 29,969 2 4 3 839 5 330 5 860 2 6 316

7.4 Extending reduce Sketches

Anotoriously hard problem in program synthesis is generating loopswhere there is data dependency
between the iterations. Many synthesizers solve the problem partially or using heuristics (examples
of this are brought in Appendix D.2). RESL takes the approach of Feser et al. [2015]; Smith and
Albarghouthi [2016] and many others, and falls back on a full enumeration in such cases.

Observers and context extension provide a more formal way to examine this problem. Consider
arr.reduce((acc,elem) => ?), where the context of the hole contains the accumulator acc whose
values are generated by previous iterations. In the previous subsection, we saw a similar problem
with sort, which we solved by overapproximating the element pairs. However, in this case, the only
sound overapproximation will include all the values generated by all programs, which is infinite
(for nontrivial vocabularies). One can think of finding all necessary values of the accumulator as
a chicken-and-egg problem: we need the values for the accumulator in order to enumerate the
programs effectively, but we need the programs to obtain the values. We explore this problem and
possible partial solutions in depth in Appendix D.

8 EMPIRICAL EVALUATION

In this section, we detail our empirical evaluation. We tested two questions: (1) Is the change in the
number of equivalence classes with different predicate types still tractable? (2) Is the OE-reduction
on completions (rather than completed programs) in higher-order function sketches necessary?
Synthesizer Implementation We implemented an enumerating synthesizer for JavaScript pro-
grams in Scala, using the J2V8 library [j2v [n.d.]] to execute JavaScript expressions. The available
predicates are (1) 𝜄 →𝑇 0 𝑜 , (2) 𝑟𝑒𝑡𝑎𝑖𝑛𝐸 , (3) 𝑒𝑥𝑐𝑙𝑢𝑑𝑒𝐸 , and (4) requiring or prohibiting subexpression
types as well as concrete values (defined in Appendix E). The first program encountered in a new
equivalence class is kept as its representative.

8.1 Effects of Predicate Type on the OE-Reduction

We first measured the effect of predicate selection on the number of OE classes (and thus the
number of programs seen when enumerating). Non negatively-stable predicates trivially increase
the number of equivalence classes, but we wished to quantify this increase. We also explored the

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 159. Publication date: November 2020.

https://www.codewars.com/kata/56cd44e1aa4ac7879200010b
https://www.codewars.com/kata/582cb0224e56e068d800003c
https://www.codewars.com/kata/56bc28ad5bdaeb48760009b0
https://www.codewars.com/kata/55aea0a123c33fa3400000e7
https://www.codewars.com/kata/5c5086287bc6600001c7589a
https://www.codewars.com/kata/54c27a33fb7da0db0100040e
https://www.codewars.com/kata/59e9f404fc3c49ab24000112
https://www.codewars.com/kata/58fa273ca6d84c158e000052
https://www.codewars.com/kata/calculate-string-rotation
https://www.codewars.com/kata/513e08acc600c94f01000001

Programming with a Read-Eval-Synth Loop 159:19

Table 2. Performing the OE-reduction on the completion vs. the full program for sketches of the form

input.𝑓 (𝑣 => ?), for 𝑓 ∈ {map, groupBy, filter, sort}. E is the set of examples given to the task. 𝑣 contains

the new variables in the inner context. terms(res) is the number of AST nodes in the result. 𝑒𝑥𝑡𝑒𝑛𝑑 (E) is the
set of valuations for the inner variables. “Programs remaining” are programs that were not discarded by OE-

reduction on the full program, and are a subset of “programs enumerated until target”, where OE-reduction

was performed on the completion. The right column shows the AST of the target program, and the colors

denote what happens to it in full-program OE: black nodes denote discarded subtrees, and grey nodes are

subtrees that were never constructed. Thus a grey or black root means that the target program was lost.

OE on completion OE on full program
programs enumerated programs progress toward

benchmark name |E | |𝑣 | terms(res) |extend(E)| until target remaining target program

m
ap

plusOneTimesTen 3 2 5 9 412 412

noX 3 1 5 7 72192 72192

gr
ou

pB
y

groupPeopleByAge 1 1 2 3 101 89

groupByXCoord 1 1 3 3 7916 6778

groupByOddEven 2 1 5 6 34954 26022

fil
te
r

noLongWords 3 1 4 8 6821 2

noTeen 3 1 6 7 6392 2

dedupInOrder 3 3 5 22 60253 10

so
rt

sortNumbers 4 2 3 33 117 13

sortByProperty 3 2 5 24 2579 2

sortByStringLength 2 2 5 14 7895 2

effect of negatively-stable predicates discarding programs from the space. Finally, we explored the
effect of mix-and-matching predicates.
Experimental setup We tested 10 numeric and string problems that do not require loops from
the competitive programming website CodeWars.com. All problems were synthesized within an
empty sketch. Each task was synthesized with four specifications: an example specification 𝑆1 = E,
𝑆2 with the addition of negatively-stable predicates to 𝑆1, 𝑆3 with the addition of non-NSP to 𝑆1,
and finally 𝑆4 that uses E−⊂E, which is insufficient to synthesize the target program on its own, in
addition to all non-example predicates in 𝑆2 and 𝑆3. The results are shown in Table 1. Benchmark
names link to their content and sample benchmarks appear in ??.

Note that while in all cases but one |𝑆4 | > |𝑆1 |, past work on predicates [Peleg et al. 2018b] found
that non-example predicates are easier for users to form than additional examples.
Results Adding NSP to the specification (𝑆2) reduced the number of equivalence classes by 45% on
average (14% to 98%, med 36%). The 98% reduction in “isUppercase” is due to the prohibit enforcing
that (for an input in E−) 𝑡𝑦𝑝𝑒 (𝑣) is not a Number.

Adding non-NSP to the specification (𝑆3) inflated the number of equivalence classes constructed
by 8.4% on average (0.3% to 48.1%, med 3.4%). The top 3 increases are probably due to retain:
“removeFirstLastLetter” (48.1%), “rotateString” (15.4%) and “isUppercase” (4.5%). However, retain is
used in 7 of the 10 benchmarks, and in the overwhelming majority of cases, its effect is barely felt.

An assortment of predicates (𝑆4) resulted in an average 61% reduction (17% to 98%, med 64%) in
the number of equivalence classes from 𝑆1. Surprisingly, even though each 𝑆4 includes at least one

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 159. Publication date: November 2020.

https://codingbat.com/prob/p103869
https://codingbat.com/prob/p105967
http://nicolele.github.io/book/learning/week3/lodash-groupby.html
https://github.com/jashkenas/underscore/issues/2697
https://www.codewars.com/kata/odd-heavy-array
https://codingbat.com/prob/p194496
https://codingbat.com/prob/p137274
https://www.codewars.com/kata/58308360aeb69a460b0002b2
https://www.codewars.com/kata/5174a4c0f2769dd8b1000003
https://www.codewars.com/kata/582887f7d04efdaae3000090
https://www.codewars.com/kata/57ea5b0b75ae11d1e800006c

159:20 Hila Peleg, Roi Gabay, Shachar Itzhaky, and Eran Yahav

non-NSP, an OE-reduction with 𝑆4 still had a fewer equivalence classes than with 𝑆2 in all but two
benchmarks: an average 23.8% reduction (med 10.1%, and max 80% fewer).
Conclusion We conclude that all our predicates are feasible for synthesis, and computational
demands should not limit the user. Even the “wasteful” retain only causes a large increase in
equivalence classes in one of the benchmarks, despite being used in almost all of them. Also,
encouraging users to mix-and-match the specification is as beneficial as restricting them to NSP.

8.2 Applying OE to the Completion vs. the Completed Program

Next, we gauged the importance of performing the OE-reduction on the completion when synthe-
sizing a solution to a sketch.
Experimental setup We synthesized the solution to 11 problems curated from the list comprehen-
sion sections of competitive programming and instructional sites, selected for having a solution of
the form input.𝑓 (?) where 𝑓 is map, groupBy (imported from lodash [lod [n.d.]]), filter, or sort,
with no additional higher-order functions in the function parameter. Each problem was provided as
a specification of input-output examples E and the sketch input.𝑓 (?). The JavaScript implemen-
tations of map and filter allow for several different signatures for the function parameter, each
introducing a different number of new variables (𝑉); this number is indicated.

We enumerated the space until the target completion and compared the number of equivalence
classes in an OE-reduction on the extended inputs to the number of equivalence classes in an OE-
reduction on the completed program and original inputs. In addition, we checked which components
of the target program were discarded as equivalent when the reduction is performed on the full
program. The results are shown in Table 2. Benchmark names are links to the benchmarks.
Results When f is map the number of equivalence classes in both enumerations is equal, because
the result of map is exactly the execution values of the completion. When f is groupBy, OE on the full
program caused some type coercion: groupBy returns a JavaScript Object, whose keys are coerced
to strings. In 2 of 3 groupBy benchmarks, this caused the space that was OE-reduced on the full
program to be slightly smaller than that reduced on the completion with no elements of the target
program lost, but in “groupByXCoord”, a subexpression of the result was discarded, so the target
program was never constructed. For filter, the drop in size of the space from OE-reduction on the
completion to the full program is three orders of magnitude, and in every benchmark most or all
subexpressions of the target program were discarded when reducing on the full program. For sort,
2 of 3 benchmarks behaved similarly, but one succeeded when reducing on the full program, aided
by the fact the elements are numbers and the target program 𝑎 − 𝑏 is very small.
Conclusion We conclude that performing the OE-reduction on the synthesized completion, using
extended inputs, is crucial to the success of the synthesis task. The loss of programs to type coercion
upon assignment and unexpected behaviors when executing on intermediate values (itself a feature
of JavaScript’s fault-avoidance, manifesting as an inability to test the program in stricter languages)
is too high for even the pretense of correctness.

9 USER STUDY

RESL offers programmers a model for working within an unfamiliar ecosystem, e.g., an unfamiliar
language. To evaluate our approach we conducted a controlled user study where experienced
programmers who are JavaScript novices used JavaScript with and without RESL. In this section,
we evaluate the effect RESL had on the success of the development process.

The study consisted of a control interface (REPL) and one of two treatments:
(T1) RESL: Using a fully-featured Arena that queries a synthesizer

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 159. Publication date: November 2020.

Programming with a Read-Eval-Synth Loop 159:21

(T2) REDL (Read-Eval-Debug Loop): The RESL Arena without synthesis, allowing only editing the
program, adding and modifying examples, and viewing debug information on programs.

T2 isolates the influence of debug information and evaluation on multiple inputs in the performance
of the users. This way, comparison between T1 and T2 shows the effect of synthesis itself.
Implementation We implemented a full Read-Eval-Synth Loop for JavaScript programs. The RESL
Arena was implemented as a a web front-end querying a synthesis server. The Arena allows entering
programs, viewing debug information on sub-expressions, and controlling the predicates and sketch
of a synthesize operation, as detailed in Section 5. Details of the synthesizer implementation appear
in Section 8. REDL was implemented by disabling all synthesis-related features in the Arena.
Synthesis queries started with |V| = 33 (7 constants and 26 functions), extended withV(𝐶) ∪

𝑒𝑥𝑡 (𝑇 0) as specified in Section 6. Functions taking a callback such as map or filter were excluded
from V to reduce the size of the space, but could be introduced by the user, as could any function
in vanilla JavaScript. To keep interaction sessions feasible, queries timed out at 20 seconds, a
manageable task interruption [Oulasvirta and Saariluoma 2006]. The synthesis server ran on a
c5n.4xlarge AWS instance, with 16 cores of 3.0 GHz Intel Xeon Platinum, 42 GiB RAM, on Amazon
Linux 2.

9.1 Experimental Setup

Our study consisted of 19 experienced industry programmers (4-40 years of programming experi-
ence, average 14.2, median 13) working in 8 different companies, recruited by answering a notice
for programmers who cannot program in JavaScript at all. Participants claimed proficiency in
Python (58%), C++ (42%), C# (31%), Java (21%), C (16%), SQL (10%), Go (5%), Bash (5%), Matlab (5%),
and Labview (6%) (numbers do not add up to 100% as most listed multiple languages).

Each participant was randomly assigned to one of four groups:
(1) REPL (control), then RESL (T1): 4 participants
(2) RESL (T1), then REPL (control): 6 participants
(3) REPL (control), then REDL (T2): 4 participants
(4) REDL (T2), then REPL (control): 5 participants

Each participant was asked to solve four JavaScript competitive programming tasks from code-
wars.com, detailed below, two questions per tool, in one of two orders. Before using each tool,
participants were shown a short demo. For REPL, this included executing a one-liner, assigning to a
variable in the global scope, and the program history. For REDL, this included adding and editing
inputs in the Arena, executing a one-liner, the output and expected output views, and viewing
subexpression debug information. For RESL, participants were shown the example from Section 2.1,
which included adding inputs, executing a one-liner, viewing the outputs and debug information,
creating a sketch, and for the synthesis step (step 5 in Figure 1) using retain, as well as excluding
the expression [1,input.toString().length] and prohibiting subexpressions of type Boolean to
additionally demonstrate exclude and prohibit.
Tasks were shown to participants one by one, and participants moved to the next task either

when they believed their answer is correct or when they gave up the task. No timeout was enforced.
Users had full access to the MDN [mdn [n.d.]], Mozilla’s JavaScript documentation, including its

internal search, and had the MDN entries for map, filter, and sort initially open. No other websites,
including search engines, were allowed; the rationale being that the purpose of documentation in
the study was to introduce JavaScript basic concepts and the function usage, rather than searching
online for a partial or full solution. The tasks tested are used in competitions and interviews and as
such are discussed online and have full solutions available.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 159. Publication date: November 2020.

159:22 Hila Peleg, Roi Gabay, Shachar Itzhaky, and Eran Yahav

Problem set We selected four tasks that are too difficult for our synthesizer to solve in full. The
tasks are taken from the competitive programming website codewars.com, containing two numeric
problems and two string problems, and are from the first three difficulty levels (of 8 available) on the
site. Each problem was presented to the users as a one-liner task, increasing its difficulty—sqdigit

appears on the site once with a difficulty level of 2 and once as a one-liner task with a difficulty
level of 3. All tasks included at least one example in the task description.

The tasks are “Title Case” (title, difficulty: 3), “numbers divisible by given number” (divisible,
difficulty: 1), “Alphabetically ordered” (ordered, difficulty: 2), and “Square every digit” (sqdigit,
difficulty: 3). Task names are links to the original task.

The implementation and anonymized study session transcripts will be released upon publication.

9.2 ResearchQuestions

(1) Does RESL reduce the editing load on the programmer? Ideally, a RESL user will have to write less
code, easing their foray into an unfamiliar ecosystem. We test this question via two metrics: the
number of edit iterations (i.e., programs entered into the Arena or evaluated in the REPL) the
user performed during the session, including syntactically incorrect programs but excluding
assigning to variables; and the portion of the code in a RESL session not written by the user.

(2) Does RESL assist in bridging knowledge gaps when solving sub-tasks? Programmers are adept at
breaking a problem up into subproblems made up of familiar concepts [Wirth 1971]. Since RESL
cannot solve the entire task for any of the tasks users must divide it into sub-tasks themselves. To
a JavaScript novice, each of these involves translating a familiar idea into unfamiliar operations.
We test this question by measuring the time spent consulting documentation.

(3) Does RESL reduce programmer frustration? We choose to examine this question not with a
survey but with an empirical measure of frustration: how many of the sessions in each group
were abandoned by the user.

(4) Does RESL speed up a programmer’s time to solution? We test this question by comparing the
times of RESL sessions to REPL sessions in two slices. Since knowledge transfer from session to
session needs to be accounted for, we perform two between-subjects comparisons of the two
halves of the within-subjects experiment (e.g., users who performed sqdigit second will be
compared to each other and not to users who performed sqdigit fourth).

(5) Are RESL users correct? Using RESL (or just a REPL) is an iterative process driven by the pro-
grammer, who is responsible for deciding when the target program has been reached. We test
whether RESL users can reach a correct program and whether they do so better than REPL users.

(6) Does using RESL improve the user’s knowledge of JavaScript? We perform a between-subjects
comparison of sessions of users who used REPL second, either after REDL or RESL. We consider
differences in time, edits, need for documentation, abandoning the session, and correctness.

9.3 Results

RQ1: Does RESL reduce the number of edit iterations and the portion of the code written by

the user? The average and median number of user edit iterations, as well as the percentage of the
result that was synthesized (measured in terms) are shown in Table 3. The number of edits was
reduced by a third or more between REPL and RESL in 3 out of the 4 tasks. In all three tasks, REDL
sessions had a small reduction of edits compared to REPL, but the reduction from REDL to RESL
was even larger, attributing the reduction to the synthesis features of RESL. In addition, the lower
number of edit iterations also corresponds to large portions of the final program being produced
by the synthesizer in RESL sessions. In title, as much as 93% and 96% of the final program was
synthesized.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 159. Publication date: November 2020.

https://www.codewars.com/kata/5202ef17a402dd033c000009
https://www.codewars.com/kata/55edaba99da3a9c84000003b
https://www.codewars.com/kata/5a8059b1fd577709860000f6
https://www.codewars.com/kata/square-every-digit/

Programming with a Read-Eval-Synth Loop 159:23

Table 3. Editing load for the programmer: average and median number of iterations where the user edited

the program when performing each task. For RESL, the number of synthesize calls and portion of the result

that was synthesized are also indicated. In three of four tasks, RESL reduces the editing load. In divisible,
the easiest task, the editing load of solving the task manually was light for all users. Many RESL users wrote

the program in full leading to median 0% synthesized.

RESL REDL REPL
edit synth % synth edit edit

iterations calls of final iterations iterations
avg med avg med avg med avg med avg med

ordered 5 4 2.6 3 48% 63% 14 13 14.2 12
sqdigit 8.80 8 4.4 4 47% 54% 12 10 10.4 13
title 8.6 10 7.4 4 41% 13% 13 14 21.6 15.5
divisible 7.6 5 0.6 0 9% 0% 7 4 5.2 4

Table 4. Average and median times (seconds) participants spent browsing documentation. In RESL and REDL,

also the time spent viewing debug information. Documentation times are greatly reduced in RESL.

RESL REDL REPL
docs debug docs debug docs

avg med avg med avg med avg med avg med
ordered 137 27 38 0 601 498 90 66 219 190
sqdigit 34 21 39 0 174 145 32 2 218 205
title 349 377 70 60 705 405 51 26 563 367
divisible 158 14 6 0 135 93 13 9 2 32

In divisible, the easiest of the tasks, there is no discernible difference between the groups.
Generally, there was far less advantage to using the synthesizer in this task, due to a combination
of a task that was easy enough that most users solved it quickly without use of the synthesizer,
and necessary program elements only available via V(𝐶). The only user who made use of the
synthesizer for this task was one who was unfamiliar with the JavaScript modulo operator.

We answer question 1 in the affirmative: users of RESL take fewer edits to arrive at a target

program, and write less of it themselves.

RQ2: Does RESL bridge knowledge gaps and reduce the need for documentation? Times users
spent browsing documentation and exploring debug information appear in Table 4. In all tasks
but divisible, RESL users consulted documentation far less than REDL and REPL users. Several
RESL users went as far as to use no documentation at all within a given task (2 in ordered, 1 in
sqcode, and 3 in divisible). This is compared to no REDL users, and 2 REPL users solving divisible.
Additionally, REDL was an improvement over REPL in only one task, and only marginally, so we
attribute this improvement to synthesis rather than the debug information.

We therefore answer question 2 in the affirmative: RESL bridges the knowledge gap of novice

users in place of the documentation.

RQ3: Does RESL reduce task abandonment? We measure frustration empirically by looking at
when users abandoned a task unfinished. Abandoned sessions are indicated in white in Figure 7.
While some REPL users abandoned their task, no RESL user abandoned a task.

Additionally, we see that REDL actually frustrated users more, not less, than REPL, from which
we conclude synthesis, not debug information, is responsible for users persisting. REDL users were
actually more likely to pinpoint a problem (e.g., “I see that comparing two arrays is doing some
sort of Object.is, rather than a value comparison”) and then decide to abandon the task because
they cannot find the solution to it.

We therefore answer question 3 in the affirmative: RESL users do not quit before finishing a

task.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 159. Publication date: November 2020.

159:24 Hila Peleg, Roi Gabay, Shachar Itzhaky, and Eran Yahav

5 1 6 5 3 5 4 1 5 5 3 8

1

1
3

1

1

2

3

2

2

1

3

3
1

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

RESL REDL REPL RESL REDL REPL RESL REDL REPL RESL REDL REPL

ordered sqdigit title divisible

correct completed uncompleted

Fig. 7. Number and cumulative percentage of users who cor-

rectly completed a task (solid), completed a task (dashed),

and abandoned the task (white) in each of the tools. No RESL

users abandoned a task.

Table 5. Median time to perform task (sec-

onds) for RESL, REPL, and completed REPL

sessions, by task order in the session. For

each task, row 1 shows times from sessions

where the task was first or second, and row 2
sessions where the task was third or fourth.

place RESL REPL REPL completed

ordered 1 1061 1136 1136
3 319 179 172

sqdigit 2 592 491 491
4 689 240 240

title 1 1590 1671 1434
3 925 1162 940

divisible 2 576 252 252
4 154 166 166

RQ4: Does RESL speed up time to solution? The lengths of sessions (in seconds) appear in Table 5.
The table contains both data for all REPL sessions and completed REPL sessions, excluding sessions
abandoned by the user. Abandoned sessions also include sessions that were immediately abandoned,
but typically were longer than finished sessions.

We perform a between-subjects comparison of the tasks when performed in the first half of the
experiment (i.e., first or second), and those performed in the second half (i.e., third or fourth). This
normalizes for JavaScript experience users acquired as the experiment progressed; times for the
same task were generally shorter when performed later in the session.

Of the 8 sets examined (4 tasks and two possible positions in the sessions for each task), RESLwas
faster for 3 of the 8 ((ordered, 1), (title, 3), and (divisible, 4)). In one additional set, (title, 1),
(as seen in Figure 7, title is the most abandoned task by REPL users), RESL users were not faster
than REPL users who completed the task, but faster than the median REPL session.
While some of a RESL session is spent waiting for a synthesize call to return (up to 20 seconds

per synthesis call), the total time is still more in half the cases. We therefore conclude RESL does

not conclusively change the time to solution, but this may change with a faster synthesizer.
RQ5: Are RESL users correct? We define correctness of a solution as passing all examples in the
task and a few additional tests for edge cases (e.g., empty strings or lists). The portions of correct
answers appear in Figure 7 as the “correct” (solid color) bars.

In 3 of the 4 tasks, all RESL users arrived at the right answer. In title, the most challenging of the
four, one RESL user finished the session with an incorrect program. This is compared to the high
percentages of both uncompleted and completed but incorrect sessions in both REDL and REPL.

REPL users were more likely to declare they had finished when the solution was incorrect,
whereas REDL users were more likely to give up. As noted in RQ3, this is likely related to REDL users
discovering a problem using debug information, but failing to solve it on their own. Unfortunately,
not enough REDL sessions were completed to allow us to analyze their correctness with any certainty,
so can only hypothesize that the correctness of RESL users is the result of debug information.
Though we do not know which of the components is responsible, we answer question 5 in the

affirmative: RESL users arrive at a correct program far more often than REPL users.

RQ6: Does RESL improve knowledge of JavaScript? To answer this question we performed a
between-subjects analysis of the REPL portion of the session in groups (2) and (4)—users who used
the REPL second, after RESL or after REDL.

The total time to solution, number of edit iterations, and correctness do not change between the
two groups in three out of the four tasks. In title, the most challenging of the four tasks, users who

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 159. Publication date: November 2020.

Programming with a Read-Eval-Synth Loop 159:25

started with RESL had considerably longer REPL sessions than users who started with REDL, and
they performed an order of magnitude more edits. Time spent browsing documentation increased
considerably for all tasks in sessions of users who started with RESL.

However, users who used the REPL after RESL were far less likely to abandon the task they were
performing, and those who abandoned their task did so after almost twice as long (also accounting
for the longer session times and larger number of edits).

We conclude from this several things: (i) using RESL for two tasks does not translate into the same
level of knowledge as solving two tasks manually; (ii) having seen JavaScript functions in RESL
sessions does not translate into less need for documentation when approaching tasks alone; and
(iii) previous successes from using RESL do translate into persistence when approaching new tasks
unaided. Although (iii) is an encouraging result for novices using RESL, we still answer question 6
in the negative: users do not learn JavaScript from using RESL.

9.4 Discussion

Even though some of our metrics were not improved (though not worsened) by RESL, the contribu-
tion of RESL to the users was very valuable on several fronts.
Reducing the mental load The RESL Arena includes two main components intended to reduce
the mental load on the user: synthesis and the ability to view debug information on subexpressions.

Synthesis is directly related to reducing effort, as it can fill in some of the code. Conveying intent
through specifications for synthesis proved easier than through documentation search queries, and
was also faster.

Debug information was originally introduced to allow users to understand the synthesized
programs (which are unfamiliar code). In practice, most synthesized programs were easily readable
to programmers, so this use was less frequent than expected. REDL users used it much more
frequently, both to pinpoint runtime errors in their own code, and to locate bugs that stem from
lack of familiarity with JS, but this did not reduce their frustration; if anything, it caused more
frustration over finding them but being unable to fix them.
Knowledge Transfer The results of RQ6 indicate that RESL is not a good pedagogical tool. This is
not wholely unexpected, as in pedagogical terms synthesized steps are “bottom-out hints” (hints
that simply tell a student what the next step is) [Suzuki et al. 2017; Vanlehn 2006].

While users did not learn more JavaScript from using RESL, we note two important things about
its use. First, RESL enables programmers to tackle small tasks in a language they are not familiar
with, when learning the language is not the objective. Second, successes using RESL had a lingering
effect, reducing the drop-out rate of users later on, when they were programming with a REPL.
Cautiosly generalizing from this, we may expect users who used RESL for a one-time task and must
return to the code to be less frustrated and more persistant than ones who tackle such tasks alone.
Usage of predicates and sketches RESL provides an expressive specification mechanism through
predicates and sketches. Both features were used across RESL sessions, as appears in Appendix F.
Most users created a sketch using the Arena at least once, marking both trivial and complex
expressions to be replaced (avg 3 terms). In addition, 7 of 10 RESL users used non-example predicates
(of the other 3, one did not use the synthesizer at all). Most users used retain, retaining expressions of
3-11 terms. exclude was not used at all; we believe this is because users perceived it as a “dangerous”
action. This may change with more use. Type constraints were most frequently used in the title

task, a string manipulation task and therefore susceptible to JavaScript’s type coercion, of the kind
shown in Section 8.2. This variation shows the need for a large toolbox of specifications, so that
the user may choose the most useful one per the specific scenario.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 159. Publication date: November 2020.

159:26 Hila Peleg, Roi Gabay, Shachar Itzhaky, and Eran Yahav

9.5 Threats to Validity

Lack of experience with RESL Participants were not only using JavaScript for the first time, but
also using RESL for the first time. This means they had no opportunity to take in the features and
recommended usage before the test session, as opposed to a REPL which most had used before. In
other words, they constructed their mental model of RESL during the course of the experiment.
Some users attested to this after their session, claiming they would have used synthesis more had
they understood or felt comfortable with it. This also meant users were learning on the go what
size sub-tasks RESL could handle, and made some overly-optimistic calls to the synthesizer.
Size of study Awithin-subjects study, while helping normalize the great variance in the experience
of participants, means that each of the tasks for RESL and REDL had only 4 or 5 participants. With
this size of study we are not able to show statisitical significance for most results.
Unclear cause of correctness The conditions of our user study do not allow us to draw conclusions
about whether correctness of REPL users is a result of synthesis or examples. While both REDL and
RESL users must input at least one example into the tool in order to execute their programs, and
in RESL to use synthesis, REDL users input far fewer examples into the tool (on some tasks, even
fewer than REPL users). Because the conditions are not level, the study setup could not be used to
disprove tests are the results of correctness in REPL. While even with fewer examples used results
may have strengthened the hypothesis of [Peleg et al. 2018b] that tests and intermediate execution
values are a greater contributor to correctness than synthesis, the large number of uncompleted
REDL sessions means we do not have sufficient data to try to make this comparison.
Differences of experience Though group assignment was random, user expertise and experience
as programmers may be distributed unevenly. Experience in weakly typed or functional languages
may have helped users decompose the task better or search the documentation more effectively.

10 RELATEDWORK

Syntax-guided synthesis [Alur et al. 2015] is the problem formulation where the synthesizer is
presented with a specification and a grammar defining the candidate program space. It is also
used to describe synthesis where the target program is constructed by syntax rules. [Chasins and
Newcomb 2016; Farzan and Nicolet 2019; Itzhaky et al. 2016; Udupa et al. 2013; Wang et al. 2017a]
all fall within this scope. The RESL synthesizer accepts a vocabulary and a specification, adhering
strictly to the definition by Alur et al. [2015]. Additionally, RESL’s vocabulary is not fixed, but
extended withV(𝐶) with code entered by the user. This also allows us to circumvent the overfitting
problem raised by Padhi et al. [2019] by extending an initial small vocabulary only as necessary.
Sketching The RESL Synthesize operation attempts to replace a subexpression in an incomplete pro-
gram with a new expression. In this aspect, it is an instance of sketching (inspired by Sketch [Solar-
Lezama et al. 2008] but separate from it), the paradigm of giving the synthesizer a program skeleton
with a missing piece or pieces, a frequent technique to reduce the candidate space and guide the
search [Hua and Khurshid 2017; Hua et al. 2018; Lubin et al. 2020; Srivastava et al. 2010, 2013;
Wang et al. 2018]. Previous work using sketching made use of sketching to reduce the search space
via a well-known sketch. Bornholt et al. [2016] and Chasins and Phothilimthana [2017] create a
sketch internal to the algorithm and complete it. Galenson et al. [2014] use user-written sketches
as filters on a list of candidates returned by the synthesizer. Making a hole in RESL extracts a sketch
dynamically from an existing statement, as part of the interaction with the user. To our knowlege
we are the first to support this.
Examples and other predicates RESL also extends Programming by Example, a frequent technique
in program synthesis leveraging either user-provided input-outputs [Feser et al. 2015; Gulwani 2011,

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 159. Publication date: November 2020.

Programming with a Read-Eval-Synth Loop 159:27

2012, 2016; Osera and Zdancewic 2015; Polozov and Gulwani 2015; Wang et al. 2017a; Yaghmazadeh
et al. 2018], tests [Feng et al. 2017b], or guided abstractions of user-prodvided examples [Wang
et al. 2017b]. RESL also uses the granular predicates on programs retain and exclude [Peleg et al.
2018a,b]. Unlike [Peleg et al. 2018a], the RESL session is not monotonic, as predicates cannot be
accumulated when the user is permitted to edit the program.
Interactionmodels for synthesis Few synthesis projects explore usability. Sketch-n-Sketch [Chugh
et al. 2016; Hempel et al. 2019; Mayer et al. 2018] provides an interaction model for repair driven
by user changes to visual objects in the output, and interleaves repairs and program edits. Rousil-
lon [Chasins et al. 2018] introduces a Programming by Demonstration interaction model for web
scraping that guides the user in demonstrating in an order that allows loops to be generalized from
a single demonstration. Like them, RESL was created with the user of the tool firmly in mind, but is
aimed at programmers rather than domain-specific end-users, choosing a REPL as an interaction
model to enrich.

CodeHint [Galenson et al. 2014] is a debug-time synthesis tool that is called from the IDE to com-
plete a missing next statement. CodeHint’s interaction centers around a type-driven specification
that can then be refined by the user using additional type information, a sketched structure that the
result must meet, and boolean expressions on the program state that must hold. Like CodeHint, RESL
is also aimed at programmers, but augments a REPL workflow rather than the IDE at debug-time.
While CodeHint’s sketches and boolean expressions are both filters on a pre-computed list of
expressions, RESL incorporates both into the synthesis engine, as shown in Section 7, which ensures
no programs will be lost as a result of the additional filtering.

Ellis et al. [2019] is a REPL-driven synthesizer; however, their interaction loop is between search
the algorithm and the interpreter, rather than with the user.
Program repair Automatic program repair [Gazzola et al. 2019] attempts to fix a defective program
based on a specification or a failing test [Le et al. 2017; Long and Rinard 2015; Xiong et al. 2017].
A major component of repair is fault localization, identifying the location where repair should
be applied [Mechtaev et al. 2016; van Tonder and Le Goues 2018]. While RESL can be viewed as
an inline repair tool, its fault localization is not automatic, but rather human-driven. Some repair
tools [D Le et al. 2017; Kneuss et al. 2015; Long and Rinard 2015] rely on program synthesis in order
to generate the repair, rather than predefined mutations. For example, in D Le et al. [2017], like in
RESL, The repair program space is defined by the original repaired expression.
Reduction of the candidate space Reducing the number of programs a synthesizer considers is
one of the major challenges of program synthesis. Gulwani [2016] and Farzan and Nicolet [2019]
restrict both the DSL used for synthesis and how its operators are composed, making DSL design
a key component of the solution. [Wang et al. 2017b,c] reduce finding a program in a DSL to
finding an accepting path in a tree automaton of the examples, then reduce the space further via
an abstraction refinement loop. Polikarpova and Sergey [2019] use separation logic proof steps
to limit the space to programs that follow the proof. Feng et al. [2017a]; Guo et al. [2019] use a
Petri-net of type signatures to limit the space to reachable paths in the net.

ACKNOWLEDGMENTS

This work was supported by Israel Science Foundation grants 243/19 and 2740/19, BSF grant no.
2018675, and by the National Science Foundation under Grant 1911149.

REFERENCES

[n.d.]. eclipsesource/J2V8: Java Bindings for V8. https://github.com/eclipsesource/J2V8. Accessed: 2020-4-22.
[n.d.]. JavaScript | MDN. https://developer.mozilla.org/en-US/docs/Web/JavaScript. Accessed: 2020-4-22.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 159. Publication date: November 2020.

https://github.com/eclipsesource/J2V8
https://developer.mozilla.org/en-US/docs/Web/JavaScript

159:28 Hila Peleg, Roi Gabay, Shachar Itzhaky, and Eran Yahav

[n.d.]. Lodash. https://lodash.com/. Accessed: 2020-4-22.
Aws Albarghouthi, Sumit Gulwani, and Zachary Kincaid. 2013. Recursive program synthesis. In International Conference on

Computer Aided Verification. Springer, 934–950.
Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo MK Martin, Mukund Raghothaman, Sanjit A Seshia, Rishabh Singh,

Armando Solar-Lezama, Emina Torlak, and Abhishek Udupa. 2015. Syntax-guided synthesis. Dependable Software

Systems Engineering 40 (2015), 1–25.
Rajeev Alur, Arjun Radhakrishna, and Abhishek Udupa. 2017. Scaling Enumerative Program Synthesis via Divide and

Conquer. In International Conference on Tools and Algorithms for the Construction and Analysis of Systems. Springer,
319–336.

James Bornholt, Emina Torlak, Dan Grossman, and Luis Ceze. 2016. Optimizing synthesis with metasketches. In Proceedings

of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2016, St. Petersburg,

FL, USA, January 20 - 22, 2016. 775–788. https://doi.org/10.1145/2837614.2837666
Sebastian Burckhardt, Manuel Fahndrich, Peli de Halleux, Sean McDirmid, Michal Moskal, Nikolai Tillmann, and Jun Kato.

2013. It’s alive! continuous feedback in UI programming. In ACM SIGPLAN Notices, Vol. 48. ACM, 95–104.
Sarah Chasins and Julie Newcomb. 2016. Using SyGuS to Synthesize Reactive Motion Plans. Electronic Proceedings in

Theoretical Computer Science 229 (11 2016), 3–20. https://doi.org/10.4204/EPTCS.229.3
Sarah Chasins and Phitchaya Mangpo Phothilimthana. 2017. Data-driven synthesis of full probabilistic programs. In

International Conference on Computer Aided Verification. Springer, 279–304.
Sarah E Chasins, Maria Mueller, and Rastislav Bodik. 2018. Rousillon: Scraping Distributed Hierarchical Web Data. In

Proceedings of the 31st Annual ACM Symposium on User Interface Software and Technology. 963–975.
Ravi Chugh, Brian Hempel, Mitchell Spradlin, and Jacob Albers. 2016. Programmatic and Direct Manipulation, Together

at Last. In Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation

(Santa Barbara, CA, USA) (PLDI ’16). Association for Computing Machinery, New York, NY, USA, 341–354. https:
//doi.org/10.1145/2908080.2908103

Edmund M. Clarke, Daniel Kroening, Natasha Sharygina, and Karen Yorav. 2004. Predicate Abstraction of ANSI-C Programs
Using SAT. Formal Methods in System Design 25, 2-3 (2004), 105–127.

Xuan Bach D Le, Duc-Hiep Chu, David Lo, Claire Goues, and Willem Visser. 2017. S3: Syntax-and Semantic-Guided Repair
Synthesis via Programming by Examples. https://doi.org/10.1145/3106237.3106309

Kevin Ellis, Maxwell Nye, Yewen Pu, Felix Sosa, Josh Tenenbaum, and Armando Solar-Lezama. 2019. Write, execute, assess:
Program synthesis with a repl. In Advances in Neural Information Processing Systems. 9165–9174.

Azadeh Farzan and Victor Nicolet. 2019. Modular Divide-and-conquer Parallelization of Nested Loops. In Proceedings of the

40th ACM SIGPLAN Conference on Programming Language Design and Implementation (Phoenix, AZ, USA) (PLDI 2019).
ACM, New York, NY, USA, 610–624. https://doi.org/10.1145/3314221.3314612

Grigory Fedyukovich, Maaz Bin Safeer Ahmad, and Rastislav Bodík. 2017. Gradual synthesis for static parallelization of single-
pass array-processing programs. In Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design

and Implementation, PLDI 2017, Barcelona, Spain, June 18-23, 2017. 572–585. https://doi.org/10.1145/3062341.3062382
Molly Q Feldman, Yiting Wang, William E Byrd, François Guimbretière, and Erik Andersen. 2019. Towards answering “Am

I on the right track?” automatically using program synthesis. In Proceedings of the 2019 ACM SIGPLAN Symposium on

SPLASH-E. 13–24.
Yu Feng, Ruben Martins, Yuepeng Wang, Isil Dillig, and Thomas Reps. 2017a. Component-Based Synthesis for Complex

APIs. In Proceedings of the 44th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

POPL 2017.
Yu Feng, Ruben Martins, Yuepeng Wang, Isil Dillig, and Thomas W Reps. 2017b. Component-based synthesis for complex

APIs. ACM SIGPLAN Notices 52, 1 (2017), 599–612.
Kasra Ferdowsifard, Allen Ordookhanians, Hila Peleg, Sorin Lerner, and Nadia Polikarpova. 2020. Small-Step Live Program-

ming by Example. In UIST. forthcoming.
John K Feser, Swarat Chaudhuri, and Isil Dillig. 2015. Synthesizing data structure transformations from input-output

examples. In ACM SIGPLAN Notices, Vol. 50. ACM, 229–239.
Joel Galenson, Philip Reames, Rastislav Bodik, Björn Hartmann, and Koushik Sen. 2014. Codehint: Dynamic and interactive

synthesis of code snippets. In Proceedings of the 36th International Conference on Software Engineering. ACM, 653–663.
Luca Gazzola, Daniela Micucci, and Leonardo Mariani. 2019. Automatic Software Repair: A Survey. IEEE Transactions on

Software Engineering 1 (2019), 34–67.
Sumit Gulwani. 2011. Automating String Processing in Spreadsheets Using Input-output Examples. In Proceedings of the

38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Austin, Texas, USA) (POPL ’11).
ACM, New York, NY, USA, 317–330. https://doi.org/10.1145/1926385.1926423

Sumit Gulwani. 2012. Synthesis from examples: Interaction models and algorithms. In Symbolic and Numeric Algorithms for

Scientific Computing (SYNASC), 2012 14th International Symposium on. IEEE, 8–14.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 159. Publication date: November 2020.

https://lodash.com/
https://doi.org/10.1145/2837614.2837666
https://doi.org/10.4204/EPTCS.229.3
https://doi.org/10.1145/2908080.2908103
https://doi.org/10.1145/2908080.2908103
https://doi.org/10.1145/3106237.3106309
https://doi.org/10.1145/3314221.3314612
https://doi.org/10.1145/3062341.3062382
https://doi.org/10.1145/1926385.1926423

Programming with a Read-Eval-Synth Loop 159:29

Sumit Gulwani. 2016. Programming by Examples (and its applications in Data Wrangling). In Verification and Synthesis of

Correct and Secure Systems, Javier Esparza, Orna Grumberg, and Salomon Sickert (Eds.). IOS Press.
Zheng Guo, Michael James, David Justo, Jiaxiao Zhou, Ziteng Wang, Ranjit Jhala, and Nadia Polikarpova. 2019. Program

synthesis by type-guided abstraction refinement. Proceedings of the ACM on Programming Languages 4, POPL (2019),
1–28.

Brian Hempel, Justin Lubin, and Ravi Chugh. 2019. Sketch-n-Sketch: Output-Directed Programming for SVG. In Proceedings

of the 32nd Annual ACM Symposium on User Interface Software and Technology. 281–292.
Jinru Hua and Sarfraz Khurshid. 2017. EdSketch: Execution-driven sketching for Java. In Proceedings of the 24th ACM

SIGSOFT International SPIN Symposium on Model Checking of Software. ACM, 162–171.
Jinru Hua, Mengshi Zhang, Kaiyuan Wang, and Sarfraz Khurshid. 2018. Towards practical program repair with on-demand

candidate generation. In Proceedings of the 40th International Conference on Software Engineering. ACM, 12–23.
Shachar Itzhaky, Rohit Singh, Armando Solar-Lezama, Kuat Yessenov, Yongquan Lu, Charles Leiserson, and Rezaul Chowd-

hury. 2016. Deriving divide-and-conquer dynamic programming algorithms using solver-aided transformations. In
Proceedings of the 2016 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and

Applications. ACM, 145–164.
Etienne Kneuss, Manos Koukoutos, and Viktor Kuncak. 2015. Deductive program repair. In International Conference on

Computer Aided Verification. Springer, 217–233.
Xuan-Bach D Le, Duc-Hiep Chu, David Lo, Claire Le Goues, and Willem Visser. 2017. JFIX: semantics-based repair of Java

programs via symbolic PathFinder. In Proceedings of the 26th ACM SIGSOFT International Symposium on Software Testing

and Analysis. ACM, 376–379.
Sorin Lerner. 2020. Projection Boxes: On-the-Fly Reconfigurable Visualization for Live Programming. In Proceedings of the

2020 CHI Conference on Human Factors in Computing Systems (Honolulu, HI, USA) (CHI ’20). Association for Computing
Machinery, New York, NY, USA, 1–7. https://doi.org/10.1145/3313831.3376494

Fan Long and Martin Rinard. 2015. Staged program repair with condition synthesis. In Proceedings of the 2015 10th Joint

Meeting on Foundations of Software Engineering. ACM, 166–178.
Justin Lubin, Nick Collins, Cyrus Omar, and Ravi Chugh. 2020. Program sketching with live bidirectional evaluation.

Proceedings of the ACM on Programming Languages 4, ICFP (2020), 1–29.
Mikaël Mayer, Viktor Kuncak, and Ravi Chugh. 2018. Bidirectional Evaluation with Direct Manipulation. Proc. ACM Program.

Lang. 2, OOPSLA, Article Article 127 (Oct. 2018), 28 pages. https://doi.org/10.1145/3276497
Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. 2016. Angelix: Scalable Multiline Program Patch Synthesis via

Symbolic Analysis. In Proceedings of the 38th International Conference on Software Engineering (Austin, Texas) (ICSE ’16).
Association for Computing Machinery, New York, NY, USA, 691–701. https://doi.org/10.1145/2884781.2884807

Cyrus Omar, Ian Voysey, Ravi Chugh, and Matthew A Hammer. 2019. Live functional programming with typed holes.
Proceedings of the ACM on Programming Languages 3, POPL (2019), 1–32.

Peter-Michael Osera and Steve Zdancewic. 2015. Type-and-example-directed program synthesis. In ACM SIGPLAN Notices,
Vol. 50. ACM, 619–630.

Antti Oulasvirta and Pertti Saariluoma. 2006. Surviving task interruptions: Investigating the implications of long-term
working memory theory. International Journal of Human-Computer Studies 64, 10 (2006), 941–961.

Saswat Padhi, Todd Millstein, Aditya Nori, and Rahul Sharma. 2019. Overfitting in Synthesis: Theory and Practice. In
Computer Aided Verification, Isil Dillig and Serdar Tasiran (Eds.). Springer International Publishing, Cham, 315–334.

Hila Peleg, Shachar Itzhaky, and Sharon Shoham. 2018a. Abstraction-Based Interaction Model for Synthesis. In Verification,

Model Checking, and Abstract Interpretation, Isil Dillig and Jens Palsberg (Eds.). Springer International Publishing, Cham,
382–405.

Hila Peleg, Sharon Shoham, and Eran Yahav. 2018b. Programming not only by example. In Proceedings of the 40th International
Conference on Software Engineering. ACM, 1114–1124.

Phitchaya Mangpo Phothilimthana, Aditya Thakur, Rastislav Bodik, and Dinakar Dhurjati. 2016. Scaling up superoptimiza-
tion. In Proceedings of the Twenty-First International Conference on Architectural Support for Programming Languages and

Operating Systems. 297–310.
Nadia Polikarpova, Ivan Kuraj, and Armando Solar-Lezama. 2016. Program synthesis from polymorphic refinement types. In

Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation. ACM, 522–538.
Nadia Polikarpova and Ilya Sergey. 2019. Structuring the synthesis of heap-manipulating programs. Proceedings of the ACM

on Programming Languages 3, POPL (2019), 72.
Oleksandr Polozov and Sumit Gulwani. 2015. Flashmeta: A framework for inductive program synthesis. ACM SIGPLAN

Notices 50, 10 (2015), 107–126.
Calvin Smith and Aws Albarghouthi. 2016. MapReduce program synthesis. In Proceedings of the 37th ACM SIGPLAN

Conference on Programming Language Design and Implementation. ACM, 326–340.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 159. Publication date: November 2020.

https://doi.org/10.1145/3313831.3376494
https://doi.org/10.1145/3276497
https://doi.org/10.1145/2884781.2884807

159:30 Hila Peleg, Roi Gabay, Shachar Itzhaky, and Eran Yahav

Calvin Smith and Aws Albarghouthi. 2019. Program Synthesis with Equivalence Reduction. In Verification, Model Checking,

and Abstract Interpretation - 20th International Conference, VMCAI 2019, Cascais, Portugal, January 13-15, 2019, Proceedings.
24–47. https://doi.org/10.1007/978-3-030-11245-5_2

Armando Solar-Lezama. 2008. Program synthesis by sketching. ProQuest.
Armando Solar-Lezama, Christopher Grant Jones, and Rastislav Bodik. 2008. Sketching concurrent data structures. In ACM

SIGPLAN Notices, Vol. 43. ACM, 136–148.
Saurabh Srivastava, Sumit Gulwani, and Jeffrey S Foster. 2010. From program verification to program synthesis. In ACM

Sigplan Notices, Vol. 45. ACM, 313–326.
Saurabh Srivastava, Sumit Gulwani, and Jeffrey S Foster. 2013. Template-based program verification and program synthesis.

International Journal on Software Tools for Technology Transfer 15, 5-6 (2013), 497–518.
Ryo Suzuki, Gustavo Soares, Elena Glassman, Andrew Head, Loris D’Antoni, and Björn Hartmann. 2017. Exploring the

design space of automatically synthesized hints for introductory programming assignments. In Proceedings of the 2017

CHI Conference Extended Abstracts on Human Factors in Computing Systems. 2951–2958.
Abhishek Udupa, Arun Raghavan, Jyotirmoy V Deshmukh, Sela Mador-Haim, Milo MK Martin, and Rajeev Alur. 2013.

TRANSIT: specifying protocols with concolic snippets. ACM SIGPLAN Notices 48, 6 (2013), 287–296.
Rijnard van Tonder and Claire Le Goues. 2018. Static automated program repair for heap properties. In 2018 IEEE/ACM 40th

International Conference on Software Engineering (ICSE). IEEE, 151–162.
Kurt Vanlehn. 2006. The behavior of tutoring systems. International journal of artificial intelligence in education 16, 3 (2006),

227–265.
Chenglong Wang, Alvin Cheung, and Rastislav Bodik. 2017a. Synthesizing highly expressive SQL queries from input-output

examples. In Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation.
ACM, 452–466.

Kaiyuan Wang, Allison Sullivan, Darko Marinov, and Sarfraz Khurshid. 2018. Solver-Based Sketching of Alloy Models Using
Test Valuations. In International Conference on Abstract State Machines, Alloy, B, TLA, VDM, and Z. Springer, 121–136.

Xinyu Wang, Isil Dillig, and Rishabh Singh. 2017b. Program Synthesis Using Abstraction Refinement. Proc. ACM Program.

Lang. 2, POPL, Article 63, 30 pages. https://doi.org/10.1145/3158151
Xinyu Wang, Isil Dillig, and Rishabh Singh. 2017c. Synthesis of Data Completion Scripts Using Finite Tree Automata. Proc.

ACM Program. Lang. 1, OOPSLA, Article 62, 26 pages. https://doi.org/10.1145/3133886
Niklaus Wirth. 1971. Program development by stepwise refinement. Commun. ACM 14, 4 (1971), 221–227.
Y. Xiong, J. Wang, R. Yan, J. Zhang, S. Han, G. Huang, and L. Zhang. 2017. Precise Condition Synthesis for Program Repair.

In 2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE), Vol. 00. 416–426. https://doi.org/10.
1109/ICSE.2017.45

Navid Yaghmazadeh, Xinyu Wang, and Isil Dillig. 2018. Automated Migration of Hierarchical Data to Relational Tables
Using Programming-by-example. Proc. VLDB Endow. 11, 5 (Jan. 2018), 580–593. https://doi.org/10.1145/3187009.3177735

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 159. Publication date: November 2020.

https://doi.org/10.1007/978-3-030-11245-5_2
https://doi.org/10.1145/3158151
https://doi.org/10.1145/3133886
https://doi.org/10.1109/ICSE.2017.45
https://doi.org/10.1109/ICSE.2017.45
https://doi.org/10.1145/3187009.3177735

Programming with a Read-Eval-Synth Loop 159:31

A BOTTOM-UP SYNTHESIS WITH OBSERVATIONAL EQUIVALENCE

In this section we define observational equivalence in different ways.

A.1 Syntactically Enumerated OE

We now describe the observational equivalence reduction in the way that is most relevant to our
paper.
The candidate program space spanned by a vocabulary V is the space of all programs the

synthesizer can create from the vocabulary.
Definition A.1. We define the program space in an inductive manner over the height of the

programs:
LVM(0) = {𝑝 | 𝑝 ∈ V, 𝑎𝑟𝑖𝑡𝑦 (𝑝) = 0}
LVM(ℎ+1) = {𝑓 (𝑝1 ...𝑝𝑘) | 𝑘 = 𝑎𝑟𝑖𝑡𝑦 (𝑓), 𝑓 ∈ V, 𝑝1...𝑝𝑘 ∈ LVM(ℎ) }
Then we can define the full space, denoted LVM ≡ ⋃

ℎ≥0LVM(ℎ)
We say that a candidate space is specification realizing for a user-provided specification 𝑆 if it

contains a program𝑚 such that𝑚 |= 𝑆 . Naively, the search for a program would simply be an
enumeration through an already-constructed LVM (since it is independent of 𝑆), looking for some
program that satisfies 𝑆 . Since the space is easily very large or infinite, we typically enumerate the
space by constructing and examining programs in LVM(0) in order, then in LVM(1), and so on until
either such𝑚 is found or some stopping condition (usually maximal depth or a timeout) is reached.

We define the candidate space with observational equivalence by induction on the height of the
programs’ ASTs:

Definition A.2. Given a set of input valuations 𝐼 = {𝑖1, . . . , 𝑖𝑛} and a set of programs P, we define
the equivalence relation ≡𝐼 as𝑚1 ≡𝐼 𝑚2 ⇐⇒ ∀𝜄 ∈ 𝐼 . J𝑚1K(𝜄) = J𝑚2K(𝜄).
Assume some function 𝑠 (𝑐) that selects a representative from an equivalence class 𝑐 , we define

𝑜𝑒 (𝐼 ,P), which performs equivalence reduction of a set of programs using ≡𝐼 :
𝑜𝑒 (𝐼 ,P) = {𝑠 (𝑐) | 𝑐 ∈ P/≡𝐼 }

We can then define the candidate space under observational equivalence:
Definition A.3. We define the OE-reduced candidate program space LVM𝑂𝐸 to be

⋃
ℎ≥0LVM𝑂𝐸

(ℎ) ,
with LVM𝑂𝐸

(ℎ) defined inductively as follows:
LVM𝑂𝐸

(0) = 𝑜𝑒 (𝐼 , {𝑡 ∈ V | 𝑎𝑟𝑖𝑡𝑦 (𝑡) = 0})
LVM𝑂𝐸

(𝑛+1) = LVM𝑂𝐸
(𝑛) ∪ 𝑜𝑒

(
𝐼 , {𝑡 (𝑐1, . . . , 𝑐𝑘)

�� 𝑡 ∈ V, 𝑘 = 𝑎𝑟𝑖𝑡𝑦 (𝑡) > 0, 𝑐1..𝑘 ∈ LVM𝑂𝐸
(𝑛) ,

∃𝑖 . ℎ𝑒𝑖𝑔ℎ𝑡 (𝑐𝑖) = 𝑛,∀𝑚 ∈ LVM𝑂𝐸
(𝑛) . 𝑡 (𝑐1, . . . , 𝑐𝑘) .𝐼 𝑚}

)
Each LVM𝑂𝐸

(ℎ) , unreduced, will get too big to compute and store even for heights as low as ℎ = 3.
In addition, no part of the enumeration can be pre-computed offline, as the space is tightly coupled
with specification; ≡𝐼 is based on the examples in 𝑆 . This means we must perform the OE-reduction
as we go along. The easiest solution is to discard a program if an observationally-equivalent program
has already been constructed, either of the same or of lower height.

In addition to Definition A.3, there are other ways to view observational equivalence. Essentially
these different ways are all equivalent, though some may make different heuristics easier to
implement.

A.2 A function from values to values

Observational equivalence can also be viewed as a labeled, non-simple, directed multi-hypergraph
whose vertices are value vectors that can be computed by programs, and whose hyperedges are

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 159. Publication date: November 2020.

159:32 Hila Peleg, Roi Gabay, Shachar Itzhaky, and Eran Yahav

(0, 0)

(0, 1)

(1, 1) (1, 2)

(0, 2)

0

1

𝑖𝑛𝑝𝑢𝑡 +

+

+

+

∗
∗

∗
Fig. 8. A (very) partial hypergraph for Example A.4. The source of each edge is the ordered vector of vertices

that serve as arguments to the operator, and the target is the result of the operator. In an OE-reduction, new

edges that lead to an existing vertex are eliminated during the construction of the hypergraph.

operations from the vocabulary. Edge sources are vectors of vertices (rather than sets in an ordinary
hypergraph) and they each have a single target. This is the technique used in works such as
[Phothilimthana et al. 2016].

Example A.4. Given the vocabularyV = {0, 1, 𝑖𝑛𝑝𝑢𝑡, +, ∗} and inputs vector ({𝑖𝑛𝑝𝑢𝑡 ↦→ 0}, {𝑖𝑛𝑝𝑢𝑡 ↦→
1}), we construct the values graph in Figure 8, to be understood as follows:

Vocabulary elements with arity 0 (the literals 0 and 1 and the variable 𝑖𝑛𝑝𝑢𝑡) generate the initial
vertices (0, 0), (1, 1), and (0, 1) (respectively). For every element in the vocabulary 𝑓 of arity 𝑘 , we
select a vector 𝑢 of 𝑘 vertices (ordered, allowing repetition) and create a hyperedge labeled 𝑓 from 𝑢

to the value vector of 𝑓 (𝑢). In our example, applying + to 𝑢 = ⟨(0, 1), (1, 1)⟩ yields (1, 2), which we
add as a new vertex connected to (0, 1) and (1, 1) by a hyperedge labeled +. Likewise, applying + to
𝑢 = ⟨(0, 0), (1, 1)⟩ yields (1, 1), which already exists, adding a hyperedge labeled + from 𝑢 to (1, 1).

In this representation, all possible value vectors generated by LVM are present as vertices.

Notice that the reduction based on values is implicit in this view, and selecting a program once
the desired value is reached is done by recursively decomposing each value, selecting one of the
operations leading to it. In an ideal implementation, all edges (operations) are kept, which means
a decomposition can apply any selection criterion. In a realistic implementation, however, the
number of programs that lead to a value vector can be enormous (in the example, consider ∗
applied to any vertex and (0, 0)). New incoming edges to an existing vertex (i.e., DFS back edges)
found during graph discovery are likely to be discarded, yielding a space in which each recursive
expansion has only a single option, replicating the result of definition A.3. What is easier to do in
this representation is to swap the expression leading to a value vector. E.g, during exploration, the
procedure may decide (2, 2) ∗ (2, 2) is a better representative of (4, 4) than (2, 2) + (2, 2), and, when
a hyperedge leads to an existing node, keep the new edge and remove the old one according to
some criterion.

A.3 Equivalence by extensional equality

It is common to define equivalence by indistinguishability under all predicates in some space.
Specifically, given the formulation of input-output examples in Section 4, we consider the set of
all possible example predicates E = {𝜄 → 𝑜 | 𝑖, 𝑜 ∈ concrete values}, functional equivalence of
programs can be defined as𝑚1 ≡𝑚2 ⇐⇒ ∀𝑝 ∈ E. 𝑝 (𝑚1) ↔ 𝑝 (𝑚2).
To modify this equivalence to match that of observational equivalence, we wish to only use a

strict subset of E, based on a user specification 𝑆 .

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 159. Publication date: November 2020.

Programming with a Read-Eval-Synth Loop 159:33

We can divide the space of programs into equivalence classes based on the truth values of
a specification, a finite number of predicates: 𝑚1 ≡S 𝑚2 ⇔ ∀𝑝 ∈ S.𝑝 (𝑚1) ↔ 𝑝 (𝑚2). This is
essentially predicate abstraction [Clarke et al. 2004]. However, this division of the space, while
able to distinguish between programs that satisfy 𝑆 and those that do not, is not useful for pruning
the space in the course of a synthesis process. The very coarse partition created may unify all
programs that do not satisfy some predicate 𝜄 → 𝑜 . Specifically, it coalesces programs that are not
interchangeable within a larger program; for example, 0 and 1 both violate the specification 0 → 2,
however 1 + 1 satisfies it while 0 + 0 does not.
In order to create a usable partition of the space, we define the following 𝑆 ′ = {𝜄 → 𝑜 ′ | (𝜄 →

𝑜) ∈ 𝑆, 𝑜 ′ ∈ concrete values}. Although the set is infinite, we can dynamically track the set of
equivalence classes encountered during an enumeration by collecting new predicates that are
satisfied by some program into 𝑆 ′′ ⊂ 𝑆 ′. Since outputs that are not seen correspond to predicates
that are not satisfied by any explored program, (≡𝑆′′) = (≡𝑆′).

This definition is the one most easily extendable to other classes of predicates over programs, as
presented in Section 7.2 and formalized in Appendices B and E.

B CORRECTNESS OF THE OE-REDUCTION

In this section, we describe the requirements for the correctness of observational equivalence.
We add rigor to the correctness proposition by Albarghouthi et al. [2013] and generalize it. Later
sections will check our extensions of observational equivalence against this definition and theorem.

Definition 7.3 defines observers. We now redefine observational equivalence to use them:

Definition B.1. Given a set of observers Π = {𝜋𝑝1 , . . . , 𝜋𝑝𝑛 } and a set of programs P, we define
the equivalence relation ≡Π as𝑚1 ≡Π 𝑚2 ⇐⇒ ∀𝜋 ∈ Π. 𝜋 (𝑚1) = 𝜋 (𝑚2).

We can now use this equivalence instead of ≡𝐼 in the definitions of LVM𝑂𝐸 and 𝑜𝑒: 𝑜𝑒 (Π,P) =
{𝑠 (𝑐) | 𝑐 ∈ P/≡Π}, where Π = {𝜋𝑝 | 𝑝 ∈ 𝑆}. The enumeration detailed in Definition A.3 remains
unchanged.

We now formalize correctness under an observational equivalence reduction. For the meantime,
let us assume the specifications 𝑆 are only input-output examples. Notice that the correctness
standard is that of a partial specification.

In our proofs, we chose to use the following equivalent property instead of (O1) of Definition 7.3:
(O1’) For two programs,𝑚1 = 𝑡 (𝑚1

1, . . . ,𝑚
1
𝑘
) and𝑚2 = 𝑡 (𝑚2

1, . . . ,𝑚
2
𝑘
), if for all 𝑖 = 1..𝑘 , 𝜋𝑝 (𝑚1

𝑖) =
𝜋𝑝 (𝑚2

𝑖), then also 𝜋𝑝 (𝑚1) = 𝜋𝑝 (𝑚2).
Equivalence follows trivially by induction on the structure of𝑚1,𝑚2.

Proof sketch of Theorem 7.2. We prove by induction on 𝑛 that if there exists a program
𝑚 ∈ LVM(𝑛) of ℎ𝑒𝑖𝑔ℎ𝑡 (𝑚) = 𝑛 with values 𝑣𝑖 for the observers 𝜋𝑝𝑖 (𝑚) = 𝑣𝑖 , then there is a program
𝑚′ ∈ LVM𝑂𝐸

(𝑛) (where ℎ𝑒𝑖𝑔ℎ𝑡 (𝑚) ≤ 𝑛) with the same values.
If𝑚 is of the form 𝑡 (𝑚1, . . . ,𝑚𝑘) and ℎ𝑒𝑖𝑔ℎ𝑡 (𝑚𝑖) < 𝑛 we can assume by induction hypothesis that

there exists𝑚′
1 . . .𝑚

′
𝑘
∈ LVM𝑂𝐸

(𝑛−1) such that 𝜋𝑝𝑖 (𝑚′
𝑗) = 𝜋𝑝𝑖 (𝑚 𝑗). From the assumption of property

(O1) in Definition 7.3, 𝜋𝑝𝑖 (𝑚) = 𝜋𝑝𝑖 (𝑡 (𝑚1, . . . ,𝑚𝑘)) = 𝜋𝑝𝑖 (𝑡 (𝑚′
1, . . . ,𝑚

′
𝑘
)). Therefore the program

𝑡 (𝑚′
1, . . . ,𝑚

′
𝑘
) is constructed at step 𝑛.

Then let𝑚′ = 𝑠 (𝑐) s.t. 𝑐 ∈ LVM(𝑛)/≡Π, 𝑡 (𝑚′
1, . . . ,𝑚

′
𝑘
) ∈ 𝑐 , then by definition of ≡Π , 𝜋𝑝𝑖 (𝑚′) =

𝜋𝑝𝑖 (𝑚). Since𝑚 |= 𝑆 , and since ≡𝜋 preserves 𝑆 ((O2) in Definition 7.3), then𝑚′ |= 𝑆 as well. □

To complete the correctness of OE, we must show that the observer for input-output examples is
both interchangable and consistent:

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 159. Publication date: November 2020.

159:34 Hila Peleg, Roi Gabay, Shachar Itzhaky, and Eran Yahav

Proof. Assuming 𝑒𝑥𝑡𝑒𝑛𝑑 is a complete extension, both requirements of Definition 7.3 are still
satisfied by 𝜋𝜄→

𝑇 0𝑜 :
(O1) Interchangeability: since 𝜋𝑝 is computed over the same fixed set of valuations, 𝑒𝑥𝑡𝑒𝑛𝑑 (𝜄,𝑇 0),

independent of the program, it holds in the same way as the naive input-output observer: when
evaluating a larger program with some input, two smaller programs which are equivalent
with that same input are interchangeable.

(O2) Consistency (if 𝜋𝑝 (𝐶1) = 𝜋𝑝 (𝐶2) then 𝐶1 |= 𝑝 ⇐⇒ 𝐶2 |= 𝑝): Let 𝐶1 s.t. J𝑇 0△𝐶1K(𝜄) = 𝑜

(Equation (1)) and let 𝐶2 s.t. 𝜋𝑝 (𝐶1) = 𝜋𝑝 (𝐶2). The evaluation of 𝑇 0△𝐶1 on 𝜄 contains some
sequence of evaluations of 𝐶1, with extended valuations 𝜎1, 𝜎2, . . . 𝜎𝑛 . By Definition C.1 and
the assumption that 𝑒𝑥𝑡𝑒𝑛𝑑 is a complete extension, 𝜎1 . . . 𝜎𝑛 ∈ 𝑒𝑥𝑡𝑒𝑛𝑑 (𝜄,𝑇 0).
From our assumption of 𝜋𝑝 (𝐶1) = 𝜋𝑝 (𝐶2), we get that

∧
𝑗=1..𝑛J𝐶1K(𝜎 𝑗) = J𝐶2K(𝜎 𝑗). On each

evaluation of 𝐶2 along the trace of evaluating 𝑇 0△𝐶2 (on 𝜄) it returns the same value as 𝐶1
did while evaluating 𝑇 0△𝐶1. By induction on the execution trace, we get that J𝑇 0△𝐶2K(𝜄) =
J𝑇 0△𝐶1K(𝜄) which, from the definition of 𝜄 →𝑇 0 𝑜 either both produce 𝑜 or neither produces 𝑜 .

□

C SKETCHES AND HIGHER-ORDER FUNCTIONS

In this section, we tackle the problem of synthesizing a completion to a sketch. We focus on
completions to sketches with higher-order functions. To do this, we extend the definitions from
Appendix B to accommodate operating directly on the completion, rather than the full program.

We will first address the case where the vocabulary of the hole is identical to the vocabulary of
the top-level expression, which holds as long as the hole is not in the scope of a binder (e.g., let, a
lambda, etc.). We will then show how to treat cases where new variables are introduced into the
scope, for which we will define a context extension.
Redefining the 𝜄 → 𝑜 predicate Since we are synthesizing a completion 𝐶 , we would like our
predicates to range over completions. We therefore redefine input-output predicates:

(𝜄 →𝑇 0 𝑜) (𝐶) ≜
(
J𝑇 0△𝐶K(𝜄) = 𝑜

)
(1)

The redefined example predicates include a binding to 𝑇 0, since their required output is in
relation to the top-level program, so they must evaluate and test 𝑇 0△𝐶 . In contrast, the observer
must evaluate on the completion alone. Even though in a language like JavaScript we can assign
𝑇 0△𝐶 and evaluate it, it does not mean we should. Type coercion during evaluation can cause very
different values of the completion to evaluate the same after assignment, and since those are not
interchangeable within a large completion, it would be incorrect to discard one of them.
E.g., consider the sketch 𝑇 0 = !(?), inputs 1 and −1, and a vocabulary containing input and

1. The completions input and 1 evaluate to two different sets of values, but assigned to 𝑇 0 both
evaluate to false. Discarding one means we deem them interchangeable, but e.g. input <= 0 is not
equivalent to 1 <= 0, which violates the correctness of OE.
As long as there are no new variables in the context of 𝐶 , we can simply compute the observer

value as we did before. The following subsections will handle cases where the hole of the sketch is
in an inner context.

C.1 New variables

A user-provided sketch 𝑇 0 can have a hole in an inner scope with additional variables (e.g.
input.reduce((x,y) => ?)). This means that completions constructed for 𝑇 0 are constructed
over an extended vocabulary V∪𝑉 , where 𝑉 = 𝑒𝑥𝑡 (𝑇 0) contains new variables in the scope of the
hole.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 159. Publication date: November 2020.

Programming with a Read-Eval-Synth Loop 159:35

In order to evaluate them for observational equivalence, the input valuation of the example needs
to be extended with values for the new variables.

Definition C.1 (Context extension). For an input valuation 𝜄 and a sketch tree 𝑇 0, we define the
set of local variables in the scope of the hole of𝑇 0 to be𝑉 . We define Σ𝑇 0

𝐶
(𝜄) as the set of valuations

under which 𝐶 is evaluated in the execution of J𝑇 0△𝐶K(𝜄), and define the function 𝑒𝑥𝑡𝑒𝑛𝑑 (𝜄,𝑇 0)
that returns a set of input valuations as follows:

𝑒𝑥𝑡𝑒𝑛𝑑 (𝜄,𝑇 0) ⊆
{
{𝑣 ↦→ 𝜎 (𝑣)}𝑣∈𝑉 | 𝐶 ∈ LV ∪𝑉 M, 𝜎 ∈ Σ𝑇

0

𝐶 (𝜄)
}

Ideally, the set inclusion is equality, such that 𝑒𝑥𝑡𝑒𝑛𝑑 (𝜄,𝑇 0) includes all values over all possible
executions of any 𝑇 0△𝐶 . We call this a complete extension.

That is, a complete extension includes every value the new variables might have in the execution
of any completion. This is sometimes trivial: in the sketch let n = 42; ? and any input 𝜄, the value
of n will be the same (42) in every run. In the sketch input.map((e,i) => ?), the possible values
are determined by the elements of the array input and their index, but are still fixed for a given
value of input.

The extnesion for filter is similar to map and Section 7.3 explains the intuition behind extending
sort. Appendix D will discuss the problem of extensions for reduce.

C.2 Extending the observers

Applying the observer to the completion is necessary due to the problem shown above, made worse
by higher-order functions that execute loops: in a call to filter the same coercion to boolean
occurs, unifying any two completions that agree on the coerced result. Likewise, in sort, where a
coercion to integer occurs and the array is sorted with that value as a comparator, programs are
unified by the order of the array that they create rather than their value. The only case where this
is guaranteed to succeed is map, as its result is essentially the execution trace of the inner loop. This
loss of precision is demonstrated in the experiment in Section 8.2.

Lemma C.2. If 𝑒𝑥𝑡𝑒𝑛𝑑 is a complete extension, the observers in Definition 7.5 have both properties

required in Definition 7.3, and Theorem 7.2 holds for input-output example observers.

D THE REDUCE PROBLEM

In this section, we show the problem with creating complete extensions for the higher-order
function reduce. While solutions exist for some specific cases, we hypothesize that the problem
is hard in general. We refer here to reduce, but the problem is found in other similar functions:
reduceRight, fold, foldLeft, foldRight, accumulate, and aggregate.
Recall that the function parameter (reducer) of a reduce function takes two parameters: the

element of the sequence currently being handled, and the accumulator into which the computation
is performed. The result of the function is passed it to the next iteration as the accumulator, and
the final result is the result of reduce.

Assume the sketch tree has a hole within the scope of reduce, for example: input.reduce((a,e)
=> ?,0). If some candidate completion 𝐶 is assigned to this sketch, then 𝐶 will be executed |𝑖𝑛𝑝𝑢𝑡 |
times, with valuations 𝜎0 = {𝑒 ↦→ input[0], 𝑎 ↦→ 0}, 𝜎1 = {𝑒 ↦→ input[1], 𝑎 ↦→ J𝐶K(𝜎0)}, 𝜎2 =

{𝑒 ↦→ input[2], 𝑎 ↦→ J𝐶K(𝜎1)}, and so on.
From valuation 𝜎1 onward, the valuation is dependent on 𝐶 . Therefore, in order to make a

complete extension we must consider the valuations for every program 𝐶 ∈ LV ∪𝑉 M over every
value for 𝑎 that can be constructed. In typed languages this can be bound by every value of type of
𝑎, whereas in a language like JavaScript, where 𝑎 is dynamically typed, every value from every
type may need to be considered.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 159. Publication date: November 2020.

159:36 Hila Peleg, Roi Gabay, Shachar Itzhaky, and Eran Yahav

It is enough thatV contain string concatenation or list append for this set to be infinite, even
when 𝑎 is typed. It is also easy for the set to be finite but unfeasibly large.

D.1 Existing solutions, and why they fall short

We show several attempts at an extension for reduce and scenarios in which those extensions lead
to discarding one of two programs that behave differently on the given inputs.
Map-like extension First, we show the problem with the previously defined extension for map. Let
us try to define:

𝑒𝑥𝑡𝑒𝑛𝑑 (𝜄, lhs.reduce((a,e) => ?, a0)) =
{
𝑒 ↦→ Jlhs[j]K(𝜄), 𝑎 ↦→ 𝑎0} ∪ 𝜄 | 𝑗 ∈ 0 : |𝑙ℎ𝑠 |

}
This extension pairs each array element with the initial accumulator value. We now examine what
would happen ifV includes ?.concat(?) and the array constructor [?].

We assume an input valuation 𝜄 = {𝑖𝑛𝑝𝑢𝑡 ↦→ [1,2,3]} and sketch input.reduce((a,e) => ?,[]).
Applying this extension, the extended context will now be:{

{𝑖𝑛𝑝𝑢𝑡 ↦→ [1,2,3], 𝑎 ↦→ [], 𝑒 ↦→ 1}, {𝑖𝑛𝑝𝑢𝑡 ↦→ [1,2,3],

𝑎 ↦→ [], 𝑒 ↦→ 2}, {𝑖𝑛𝑝𝑢𝑡 ↦→ [1,2,3], 𝑎 ↦→ [], 𝑒 ↦→ 3}
}

We now consider two programs of height 1 using this context:𝑚1=a.concat(e) and𝑚2=[e].
For both of these programs, the outputs for the extended inputs will be [1], [2], and [3] respec-
tively, which means that under this extension they are observationally equivalent, and one will
be discarded. However, in order to test the predicate [1,2,3] → [3], we test the completed pro-
grams input.reduce((a, e) => a.concat(e), []) and input.reduce((a,e) => [e], []) with the
unextended inputs. Property (O2) of Definition 7.3 requires equivalent programs to have the same
predicate truth value. However, evaluating the completed programs, the outputs are [1,2,3] and
[3], therefore𝑚1 ̸ |= 𝑝 and𝑚2 |= 𝑝 . This means that discarding one at the inner context may cause
us to miss a specification-satisfying (completed) program.
Trace semantics As a different strategy for OE instead of input extension, one may suggest using
a variation on trace semantics: we use the evaluations of𝐶 within the loop in sequence as the value
of the observer. This observer is executed outside reduce on the unextended input valuation.

Consider again the sketch input.reduce((a,e) => ?, []) and the input valuation 𝜄 = {𝑖𝑛𝑝𝑢𝑡 ↦→
[1,2,3]}. Also consider two completions𝑚1=a.reverse() and𝑚2=[].reverse(). This observer as-
sociates both 𝑚1 and 𝑚2 with the value ([], [], []), so we expect them to be interchangeable
within a larger expression (property (O1) of Definition 7.3). However, once used in a larger
AST, such as ?.concat(e), they no longer yield the same observer value. The observer value of
a.reverse().concat(e) will be ([1], [1,2], [2,1,3]), whereas [].reverse().concat(e) will yield
([1], [2], [3]).
Alternately, if we define the full execution trace as our observer, we will stop unifying different

subprograms that yield the same value if their execution trace is different. E.g., we will no longer
unify l.reverse().reverse() with l or l.sort().sort() with l.sort(), as the longer execution is
no longer equal to the shorter one.

D.2 Reducers in other synthesizers

Previous synthesizers have tackled the problem of synthesizing a reducer for a reduce or fold
higher-order sketch.
𝜆2 [Feser et al. 2015] hypothesizes a higher-order sketch and propagates the examples to create a

new example set with which to synthesize the lambda body. Both sketch hypothesis and example
propagation in 𝜆2 are based on semantic deduction rules specific to each function. For fold they
can only deduce inner example pairs when the outer inputs cover two lists one element apart, e.g.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 159. Publication date: November 2020.

Programming with a Read-Eval-Synth Loop 159:37

[1,2] and [1,2,3] (for left fold), or [2,3] and [1,2,3] (for right fold). Like our work, assigning
the completion and testing the original specification is necessary. Because deduced example pairs
are not used for an equivalence reduction, the incompleteness of the deduction does not harm
correctness. In cases where terms of deduction rules are not satisfied, 𝜆2 collapses to a type-driven
enumeration.
Synqid [Polikarpova et al. 2016] expands on this idea by encoding the already-folded part of

the list into the refinement type information of foldr. Due to the nature of the encoding, Synqid
supports only foldr, and not foldl.

Fedyukovich et al. [2017] compute fold calls with an associative operator, for use in a parallelizing
synthesizer, by reusing functors that occur in the sequential version. Likewise, Farzan and Nicolet
[2019] use foldl as part of the sketch for synthesizing a parallelizable program from a non-parallel
loop implementation, but severe mathematical restrictions are placed on the synthesized component,
which is not a general reducer.

Big𝜆 [Smith and Albarghouthi 2016] synthesizes reducers by performing a top-down type-
directed enumeration of the grammar. Because big𝜆 searches for programs that satisfy additional
properties, they enumerate every type-correct program in the space in order to avoid discarding a
program that satisfies the property.

D.3 Infeasibility hypothesis

We believe the general case of creating an extension for reduce that can be used for observational
equivalence is impossible. The complete extension of most reduce calls over most vocabularies will
be infinite. There might be a sufficient finite extension for a given synthesis problem, but since
infinitely-many values are dropped, there isn’t likely to be a generic one. One can think of it as a
chicken-and-egg problem: we need the values for the accumulator in order to effectively enumerate
the programs, but we need the programs in order to obtain the values.

Collecting programs and values at the same time also fails, as each program is tested for equiva-
lence with only a subset of the necessary values. Every new program added to the space potentially
discovers new values for the accumulator, which previous programs were not tested with. Future
programs might be added to the space based on these values, but programs that were deemed
equivalent and discarded cannot be regained without rescanning the unreduced space, and their
loss impacts the construction of larger programs.

While this subsection provides our intuition for this belief, proving it is beyond the scope of this
paper and the general problem remains open.

D.4 Special Cases of Reducers

We present two cases where we can handle reducers in a limited (and suboptimal) manner. These
will involve either treating the synthesis process for the reducer separately, or working with an
overapproximation of 𝑒𝑥𝑡𝑒𝑛𝑑 which will create spurious equivalence classes, but will at least not
lose the target program. Such an extension will be correct , but because of the spurious inputs and
spurious equivalence classes will be (much) less efficient.
Awell-typed accumulator of a small typeWhenwriting a reducer for a statically typed language,
if the type of the accumulator (also the return type of the reducer and the full call to reduce) is of a
small type, e.g., boolean, char, or an enum, we can create

𝑒𝑥𝑡𝑒𝑛𝑑+ (lhs.reduce((a,e) => ?,a0), 𝜄) ={
𝜄 ∪ {𝑒 ↦→ Jlhs[j]K(𝜄), 𝑎 ↦→ 𝑣} | 𝑗 ∈ 0 : |𝑙ℎ𝑠 |, 𝑣 ∈ J𝑡𝑦𝑝𝑒 (𝑎)K

}
This input extension now potentially covers more values of a than are feasible in V , but since all
values possible are covered, this will at most create a finer partition into equivalence classes.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 159. Publication date: November 2020.

159:38 Hila Peleg, Roi Gabay, Shachar Itzhaky, and Eran Yahav

Notice that since a is statically typed, many intermediate programs enumerated will not be able
to serve as the reducer, since they do not return a value of 𝑡𝑦𝑝𝑒 (𝑎). However, these programs still
need to be enumerated and split into equivalence classes in order to construct the final lambda
that does return a result of 𝑡𝑦𝑝𝑒 (𝑎). Because of this, even though the extension has changed from
𝑒𝑥𝑡𝑒𝑛𝑑 to 𝑒𝑥𝑡𝑒𝑛𝑑+, 𝜋𝑝 still ranges over all values of any type as in its original definition.
An append-only accumulator Consider the sketch𝑇 0 = lhs.reduce((a,e) => a.concat(?), [])

where amay not appear within the hole. This limited reduce behaves as a combination mapper-filter
(and in fact is a common way to implement map and filter in one call), which means the result of
reduce is very nearly the execution trace of reduce.

Because a cannot be read from, this essentially becomes independent iterations of a loop, which
means we can use the same extension as for lhs.map(e => ?), where a gets a value of⊥, and execute
the observer as usual.
For example, for the completion 𝐶 = (e < 0 ? [-e] : []) and the input valuation

𝜄 = {𝑖𝑛𝑝𝑢𝑡 ↦→ [-1,0,-2]}, our extension and observer value for the sketch 𝑇 0 =

input.reduce((a,e) => a.concat(?),[]) will be:

𝜋𝜄→
𝑇 0𝑜 (𝐶) =

{
{𝑖𝑛𝑝𝑢𝑡 ↦→ [-1,0,-2], 𝑒 ↦→ −1, 𝑎 ↦→ ⊥} ↦→ [1],

{𝑖𝑛𝑝𝑢𝑡 ↦→ [-1,0,-2], 𝑒 ↦→ 0, 𝑎 ↦→ ⊥} ↦→ [],

{𝑖𝑛𝑝𝑢𝑡 ↦→ [-1,0,-2], 𝑒 ↦→ −2, 𝑎 ↦→ ⊥} ↦→ [2]
}

There are likely other cases of reduce that can be handled specifically. Sadly, the lack of a generic
solution for reduce makes synthesizer code trying to handle it cumbersome and inefficient.
It is also worth noting that this section has focused specifically on reduce, being a staple of

functional programming, but it is easy to see that the same problem applies to all other manner of
loops with dependent iterations.

E OBSERVING PREDICATES, A FORMAL APPROACH

Section 7.2 only discussed the predicates exposed by the RESL Arena. However, since any decidable
predicate can be used in this framework, we bring a few more examples. We also prove the
correctness of the predicates shown in Section 7.2.

E.1 Additional predicates

In this subsection we suggest additional predicates, some of which we use in our benchmarks.
Well typedness: Accepts all well-typed programs. Holds for every program that compiles in a
statically typed language. In other languages, limits the search to certain well-behaving programs
via a set of typing rules. E.g., a rule that forces all lists to be homogeneous, or a rule that limits
implicit type coercions. This is a semantic predicate.
Exception predicates: Denoted 𝑖 ⇀ X, determines whether an input leads to an exception type in
a given set X.
Subexpression data predicates: The require and prohibit predicates predicates defined in Section 4
are part of a meta-class of predicates that apply a parameter predicate to the execution results of
subexpressions of a given expression.

𝑠𝑝 (𝑑𝑝,𝜄) (𝑚) = ∃𝑇 ⊆ 𝑚.𝑑𝑝 (J𝑇 K(𝜄))

Its negation is also useful, denoted 𝑠𝑝 (𝑑𝑝,𝜄) (𝑚) = ¬𝑠𝑝 (𝑑𝑝,𝜄) (𝑚).

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 159. Publication date: November 2020.

Programming with a Read-Eval-Synth Loop 159:39

Using this definition, require𝜏 and prohibit𝜏 are the instantiations of 𝑠𝑝 and 𝑠𝑝 with 𝑑𝑝 (𝑣) =

(𝑡𝑦𝑝𝑒 (𝑣) = 𝜏). There are also other interesting predicates, such as 𝑑𝑝 (𝑣) = (𝑣 = 𝑥), which requires
and prohibits an intermediate execution value.

E.2 Observers

As we have seen in Section 7.2, we must distinguish between programs based on more than their
output. Our definition of equivalence (Definition B.1) uses observers rather than simple execution
values, whichmeanswe can separate programs intomore equivalence classes by designing observers
for the other predicates that are available to the user.
Section 7.2 defined the observers for exclude and retain. The purpose of the definition is to

preserve interchangeability (O1 in Definition 7.3).

Example E.1 (Interchangeability in exclude). Let us assume two programs that are entirely equiv-
alent for a specification 𝑆 that includes only input-output examples, 𝑚1=x and 𝑚2=2. We now
consider an extended specification, 𝑆 ′ = 𝑆 ∪ {exclude𝑦+2}. If we do not differentiate between𝑚1
and𝑚2 on the basis of the exclude predicate, then𝑚1 and𝑚2 will be in the same equivalence class,
and𝑚2 may be picked as its representative. In this case, we will lose the ability to construct the
program y+x (or one equivalent to it).

Lemma E.2. The observers for retain and exclude have both properties required in Definition 7.3,

and Theorem 7.2 holds for specifications with exclude and retain.

Proof. Since both observers are defined the same, we show correctness of 𝜋retain, and correctness
of the 𝜋exclude observer follows.
We use, 𝑟𝑜𝑜𝑡 (𝑇) ∈ V to denote the term represented by the AST node at the root of 𝑇 .

(O1) Interchangeability: For 𝑝 = 𝑟𝑒𝑡𝑎𝑖𝑛𝐸 , we examine the three cases of values of 𝜋𝑝 : Given 𝑘
program pairs (𝑚1

1,𝑚
2
1), . . . , (𝑚1

𝑘
,𝑚2

𝑘
), if 𝜋𝑝 (𝑚1

𝑖) = 𝜋𝑝 (𝑚2
𝑖),

• If for every 𝑖 , 𝜋𝑝 (𝑚1
𝑖) = 𝜋𝑝 (𝐸𝑖), and 𝑡 = 𝑟𝑜𝑜𝑡 (𝐸), then 𝑡 (𝑚1

1, . . . ,𝑚
1
𝑘
) = 𝑡 (𝑚2

1, . . . ,𝑚
2
𝑘
) = 𝐸,

and 𝜋𝑝 (𝑡 (𝑚1
1, . . . ,𝑚

1
𝑘
)) = 𝜋𝑝 (𝑡 (𝑚2

1, . . . ,𝑚
2
𝑘
)) = 𝜋𝑝 (𝐸) (or 1), and likewise, recursively for

every subtree in 𝐸
• If for some 𝑖 , 𝜋𝑝 (𝑚1

𝑖) = 1, then both 𝐸 ⊆ 𝑚1
𝑖 and 𝐸 ⊆ 𝑚2

𝑖 , and 𝜋𝑝 (𝑚1) = 𝜋𝑝 (𝑚2) = 1
• In every other case, 𝜋𝑝 (𝑚1) = 𝜋𝑝 (𝑚2) = 0

(O2) Consistency (If 𝜋𝑝 (𝐶1) = 𝜋𝑝 (𝐶2) then 𝐶1 |= 𝑝 ⇐⇒ 𝐶2 |= 𝑝): If 𝜋𝑝 (𝐶1) = 𝜋𝑝 (𝐶2) = 1, then
𝐸 was found somewhere along the way in both 𝐶1 and 𝐶2, so 𝐶1 |= 𝑝 and 𝐶2 |= 𝑝 . For every
other value, 𝐸 was found in neither, so 𝐶1 ̸ |= 𝑝 and 𝐶2 ̸ |= 𝑝 .

□

Subexpression data observers We can define a generic observer for any subexpression data pred-
icates, which is a hybrid between the observer for input-output examples and the exclude observer:
𝜋𝑠𝑝 (𝑑𝑝,𝑖) (𝑚) = (𝑠𝑝 (𝑑𝑝,𝑖) (𝑚), 𝜋𝜄→⊥ (𝑚)). The observers for require and prohibit are refinements of this,
replacing the full execution value with the type of the current program, which is sufficient for
interchangeability and consistency in their case.

Lemma E.3. The gerneric observer for subexpression data predicates has both properties required in

Definition 7.3, and Theorem 7.2 holds for a specification with these predicates.

Correctness for 𝜋𝑠𝑝 (𝑑𝑝,𝜄) (𝑚). (O1) Interchangeability: Given 𝑘 program pairs
(𝑚1

1,𝑚
2
1), . . . , (𝑚1

𝑘
,𝑚2

𝑘
), if 𝜋𝑝 (𝑚1

𝑖) = 𝜋𝑝 (𝑚2
𝑖), where 𝑝 = 𝑠𝑝 (𝑑𝑝,𝑖) , for𝑚1 = 𝑡 (𝑚1

1, . . . ,𝑚
1
𝑘
),𝑚2 =

𝑡 (𝑚2
1, . . . ,𝑚

2
𝑘
), 𝜋𝜄→⊥ (𝑚1) = 𝜋𝜄→⊥ (𝑚2) from the correctness proof of 𝜋𝜄→𝑜 . It remains to show

that 𝑠𝑝 (𝑑𝑝,𝑖) (𝑚1) = 𝑠𝑝 (𝑑𝑝,𝑖) (𝑚2). If one of 𝑝 (𝑚1
𝑗) = 𝑝 (𝑚2

𝑗) is true, then 𝑝 (𝑚1) = 𝑝 (𝑚2) is true.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 159. Publication date: November 2020.

159:40 Hila Peleg, Roi Gabay, Shachar Itzhaky, and Eran Yahav

(a) (b)
Fig. 9. (a) The effect on enumeration of the negatively-stable predicate (NSP) 𝑝1: once 𝑝1 does not hold for𝑚1
it will not hold for any𝑚𝑖 that has𝑚1 as a subtree, and (b) the non-effect on enumeration of 𝑝2, a non-NSP.

Otherwise, 𝑝 is false for every subtree of𝑚1 and𝑚2, so the truth value of 𝑝 depends only on
the value of the root. Specifically, 𝑝 (𝑚1) ⇔ 𝑑𝑝 (J𝑚1K(𝜄)), and 𝑝 (𝑚2) ⇔ 𝑑𝑝 (J𝑚2K(𝜄)). Since
J𝑚1K(𝜄) = J𝑚2K(𝜄), from equality of the second component, then 𝑝 (𝑚1) = 𝑝 (𝑚2). This means
both components of 𝜋𝑝 are equal.

(O2) Consistency (If 𝜋𝑝 (𝐶1) = 𝜋𝑝 (𝐶2) then 𝐶1 |= 𝑝 ⇐⇒ 𝐶2 |= 𝑝): this is trivially true because
the result of 𝑝 is the first component of the observer value.

□

E.3 Negatively-stable predicates

Creating additional equivalence classes means each level LVM𝑂𝐸
(ℎ) of the enumeration grows larger,

as more programs are reserved at lower heights. Fortunately, in some cases we can discard programs
from the enumeration altogether, never using them in larger programs. This requires a stability
property of predicates with regard to tree composition:

Definition E.4. We say that a predicate 𝑝 is a negatively-stable predicate (NSP) i.f.f. for every tree
𝐴 s.t. 𝐴 ̸ |= 𝑝 , for every tree 𝑇 s.t. 𝐴 ⊆ 𝑇 , 𝑇 ̸ |= 𝑝 (illustrated in Figure 9).

Of the predicate families available in the RESL Arena, exclude and prohibit are negatively-stable,
whereas examples, retain and require are not. The intuition for this was given in Section 7.2. Of
the predicates introduced in the previous subsection, well typedness is negatively-stable, and
exception predicates are not. Subexpression data predicates 𝑠𝑝 (𝑑𝑝,𝑖) are not negatively-stable (they
are positively stable: once a subexpression exists it will exist in larger expressions), and their
negation, 𝑠𝑝 (𝑑𝑝,𝑖) is negatively-stable.
In the previous section, we incorporated the observers of all predicates into the equivalence

relation. But if any of the predicates in 𝑆 are negatively-stable, we can make the enumeration more
efficient by discarding programs as we enumerate, including fewer programs in each level of the
enumeration. By not including in LVM𝑂𝐸

(𝑖) any programs that do not satisfy some NSP predicate 𝑝 ∈ 𝑆 ,
we reduce the number of programs that will be constructed in LVM𝑂𝐸

(𝑖+1) . We are still guaranteeing
correctness, as NSP means that if tree 𝑇 does not satisfy 𝑝 , any programs constructed from 𝑇 will
also not satisfy 𝑝 (illustrated in Figure 9).
Example E.5. In the example where 𝑆2 = {[7,8,7,3] ↦→? 6, 𝑒𝑥𝑐𝑙𝑢𝑑𝑒2 + 2}, when LVM𝑂𝐸

(1) is enu-
merated, the program 2 + 2 is composed and tested for NSP in 𝑆2, namely 𝑒𝑥𝑐𝑙𝑢𝑑𝑒2 + 2. Since
2 + 2 ̸ |= 𝑒𝑥𝑐𝑙𝑢𝑑𝑒2 + 2, it is removed from LVM𝑂𝐸

(1) . This is correct, as it does not satisfy 𝑆2, and neither
will any program composed from it, which will include 2 + 2.

The desired input.length will be included in LVM𝑂𝐸
(1) as the representative of the equivalence

class of the observer values 𝑡𝑟𝑢𝑒 for the 𝑒𝑥𝑐𝑙𝑢𝑑𝑒 predicate and 4 for the example. The class of
programs with observer values false and 4 no longer exists in the program space.

To leverage this, we define LVM𝑂𝐸 = {𝑚 ∈ LVM𝑂𝐸 | 𝑚 |= 𝑝 for all NSP 𝑝 ∈ 𝑆}, i.e., an enumera-
tion in which a program is discarded if it violates some NSP.

Theorem E.6. Given specification 𝑆 and a program𝑚 ∈ LVM𝑂𝐸
such that𝑚 |= 𝑆 , then𝑚 ∈ LVM𝑂𝐸

.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 159. Publication date: November 2020.

Programming with a Read-Eval-Synth Loop 159:41

Proof of Theorem E.6. Notice that, while in Definition 7.4 we defined the range of 𝜋𝑝 as
0 . . . 𝑡𝑒𝑟𝑚𝑠 (𝐸), any program reached while enumerating the space where ¬𝑝 (𝑚) is removed from
the enumeration, leaving only programs where 𝜋𝑝 (𝑚) > 0. This means that it is sufficient to define
the observer 𝜋 ′

𝑝 (𝑚) ∈ 1 . . . 𝑡𝑒𝑟𝑚𝑠 (𝐸), defining only the cases where 𝑝 is true.
In fact, this modified definition is sufficient for any negatively-stable predicate unless it involves

input data. For example, for prohibit, which has two components, the value of 𝑝 and the data
observer, we can discard the boolean component (or keep it as the unit value, tt). (Philosophically
speaking, observational equivalence is defined over inputs deemed important by the user, and
NSP that introduce inputs contribute “important inputs”, which we now wish to split equivalence
classes based on. This is why observers of any predicates that introduce input data will inevitably
include as a component the 𝜄 → 𝑜 observer (including sketching): even if the enumeration can be
pruned based on them, cases where the predicate is true should create equivalence classes based on
the output.)

By applying this transformation to all NSP, and leaving the other predicates intact, we obtain a
new set of observers Π′. We only require that for every such new observer,

𝑇1,2 |= 𝑝 ⇒ 𝜋 ′
𝑝 (𝑇1) = 𝜋 ′(𝑇2) ⇐⇒ 𝜋𝑝 (𝑇1) = 𝜋𝑝 (𝑇2) (2)

This is trivial in any case where 𝜋 ′
𝑝 (𝑚) = tt, for 𝜋 ′

𝑠𝑝 (𝑑𝑝,𝑖)
, this maintains equality on the second

component of the original observer, and for exclude, this maintains equality for all values that are
not 0.
An NSP-optimized enumeration To take advantage of NSP, we modify our enumeration. In
definition Definition A.2 we replace the definition of 𝑜𝑒 , which reduces a set of programs in the
course of the enumeration, with 𝑜𝑒 (Π, 𝑁 ,P) = {𝑠 (𝑐) | 𝑐 ∈ {𝑚 ∈ P | 𝑚 |= 𝑁 }/≡Π}.
We define the optimized OE-reduction LVM𝑂𝐸 by replacing 𝑜𝑒 (𝐼 , . . .) with 𝑜𝑒 (Π′, 𝑁 , . . .) such

that Π′ = {𝜋𝑝 | 𝑝 ∈ 𝑆 \ 𝑁 } ∪ {𝜋 ′
𝑝 | 𝑝 ∈ 𝑁 } where 𝑁 ⊆ 𝑆 are the negatively-stable predicates in 𝑆 .

To show correctness of this new reduction, we first prove the following lemma:

Lemma E.7. The new observer set Π′
preserves the equivalence class partition in the following way:(

{𝑚 ∈ P | 𝑚 |= 𝑁 }/≡Π′
)
⊆

(
P/≡Π

)
The equivalence class of some 𝑥 ∈ 𝑋 under an equivalence relation ≡ is denoted [𝑥]≡.

Proof. Let𝑚 ∈ P be a program such that𝑚 |= 𝑁 . We denote its equivalence class under ≡Π′ to
be 𝑐 ′ = [𝑚]≡Π′ .

We prove that 𝑐 ′ = [𝑚]≡Π ∈ P/≡Π .
Let𝑚′ ∈ P. If𝑚′ ̸ |= 𝑁 , then𝑚′ ∉ 𝑐 ′, as all members of 𝑐 ′ satisfy 𝑁 , and also𝑚′ ∉ [𝑚]≡Π , because

from (O2) of Definition 7.3 if the truth values of a predicate are different, the 𝜋 values of that
predicate will also be different.

If𝑚′ |= 𝑁 , then from (2),𝑚 ≡Π 𝑚
′ ⇔𝑚 ≡Π′ 𝑚′. Therefore,𝑚′ ∈ 𝑐 ′ ⇔𝑚′ ∈ [𝑚]≡Π . □

From the assumption, it follows that in particular𝑚 |= 𝑁 where 𝑁 are the negatively stable
predicates in 𝑆 . From the definition of negatively-stable predicates, it also follows that for every
𝑇 ⊆ 𝑚, 𝑇 |= 𝑁 .

We prove by induction on 𝑇 that 𝑇 ∈ LVM𝑂𝐸
(𝑛) for every 𝑛 ≥ height (𝑇).

Let 𝑇 = 𝑡 (𝑇1, . . . ,𝑇𝑘) (for leaves, 𝑘 = 0) and let ℎ = ℎ𝑒𝑖𝑔ℎ𝑡 (𝑇). Since the heights of 𝑇1, . . . ,𝑇𝑘 are
at most ℎ − 1, then by the induction hypothesis, 𝑇1, . . . ,𝑇𝑘 ∈ LVM𝑂𝐸

(ℎ−1) .
We remind the reader that LVM𝑂𝐸 is defined using Π, i.e., the observers defined in Appendix E,

whereas LVM𝑂𝐸 is defined using Π′.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 159. Publication date: November 2020.

159:42 Hila Peleg, Roi Gabay, Shachar Itzhaky, and Eran Yahav

From the assumption,𝑇 ∈ LVM𝑂𝐸
(ℎ) sinceℎ ≥ ℎ. Since𝑇 is in LVM𝑂𝐸

(ℎ) , then∀𝑇
′ ∈ LVM𝑂𝐸

(ℎ−1) . 𝑇 .Π 𝑇
′,

i.e., 𝑇 is in a new equivalence class of ≡Π . From Lemma E.7, it is also in a new equivalence class of
≡Π′ .

Additionally, 𝑇 was selected by representative selection in 𝑜𝑒 in order to be added to LVM𝑂𝐸
(ℎ) .

Also from the assumption, 𝑇 |= 𝑁 . This means that 𝑇 ∈ {𝑚 ∈ P | 𝑚 |= 𝑁 } in the definition of
𝑜𝑒 . From Lemma E.7, the equivalence class [𝑇]≡Π = [𝑇]≡Π′ = 𝑐 , therefore, since 𝑠 (𝑐) = 𝑇 , 𝑇 will be
selected as the representative by 𝑜𝑒 .

Therefore, 𝑇 ∈ LVM𝑂𝐸
(ℎ) .

Finally, from the monotonicity of the definition, 𝑇 ∈ LVM𝑂𝐸
(𝑛) for every 𝑛 ≥ ℎ. □

LVM𝑂𝐸 represents the final result of this paper, encompassing all the ideas presented, and is the
reduction implemented in our experiments.

F USER STUDY DATA

Here, we add to the data in Table 3 by summarizing the different operations performed by user
study participants.

retain exclude type constraints holes
size

times used (terms) times used times used (all) require prohibit times used size (terms)
avg med max avg avg med max avg med max avg avg avg med max avg med max

ordered 0.6 0 2 5 0 0 0 0.4 0 2 0.4 0 0.8 0 2 2.5 2 5
sqdigit 0.2 0 1 11 0 0 0 0 0 0 0 0 0.8 1 2 4.3 3 8
title 0.8 1 2 9 0 0 0 3.2 3 8 1.8 1.4 2.0 1 5 3.1 3.5 5
divisible 0.6 0 3 3 0 0 0 0.6 0 3 0.4 0.2 0.6 0 3 6.0 8 8

Table 6. Predicates used by user study participants.

Additionally, we break down the usage of require and prohibit:

And present the usage of examples in the different study setups:

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 159. Publication date: November 2020.

Programming with a Read-Eval-Synth Loop 159:43

We notice that RESL users and REDL users tested their work on more examples than REPL users,
because of the ease of doing so in the Arena. However, RESL users consistently used many more
examples as part of the iterative synthesis process.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 159. Publication date: November 2020.

	Abstract
	1 Introduction
	2 Overview
	2.1 Motivating Example
	2.2 The Anatomy of a RESL-ing Session
	2.3 A Synthesizer Fit to RESL
	2.4 Key Aspects

	3 Preliminaries
	4 Predicates
	5 The RESL Arena
	6 Synthesis queries
	7 Synthesizer Overview
	7.1 Bottom-Up Synthesis with Observational Equivalence
	7.2 Synthesis with General Predicates
	7.3 Synthesis inside a Sketch
	7.4 Extending reduce Sketches

	8 Empirical Evaluation
	8.1 Effects of Predicate Type on the OE-Reduction
	8.2 Applying OE to the Completion vs. the Completed Program

	9 User Study
	9.1 Experimental Setup
	9.2 Research Questions
	9.3 Results
	9.4 Discussion
	9.5 Threats to Validity

	10 Related Work
	Acknowledgments
	References
	A Bottom-Up Synthesis with Observational Equivalence
	A.1 Syntactically Enumerated OE
	A.2 A function from values to values
	A.3 Equivalence by extensional equality

	B Correctness of the OE-Reduction
	C Sketches and Higher-Order Functions
	C.1 New variables
	C.2 Extending the observers

	D The reduce Problem
	D.1 Existing solutions, and why they fall short
	D.2 Reducers in other synthesizers
	D.3 Infeasibility hypothesis
	D.4 Special Cases of Reducers

	E Observing predicates, a formal approach
	E.1 Additional predicates
	E.2 Observers
	E.3 Negatively-stable predicates

	F User Study Data

