
Noname manuscript No.
(will be inserted by the editor)

Programming by Predicates

A formal model for interactive synthesis

Hila Peleg · Shachar Itzhaky · Sharon
Shoham · Eran Yahav

Received: date / Accepted: date

Abstract Program synthesis is the problem of computing from a specification
a program that implements it. New and popular variations on the synthesis
problem accept specifications in formats that are easier for the human synthesis
user to provide: input-output example pairs, type information, and partial
logical specifications. These are all partial specification formats, encoding only
a fraction of the expected behavior of the program, leaving many matching
programs. This transition into partial specification also changes the mode of
work for the user, who now provides additional specifications until they are
happy with the synthesis result. Therefore, synthesis becomes an iterative,
interactive process.

We present a formal model for interactive synthesis, parameterized by an
abstract domain of predicates on programs. The abstract domain is used to
describe both the iterative refinement of the specifications and reduction of the
candidate program space. We motivate the need for a general feedback model
via predicates by showing that examples, the most frequent specification tool,
are an insufficient tool to differentiate between programs, even when used
as a full specification. We use the formal model to describe the behavior of

A preliminary version of this paper appeard in [29,27].

H. Peleg
Technion, Israel
E-mail: hilap@cs.technion.ac.il

S. Itzhaky
Technion, Israel
E-mail: shachari@csa.technion.ac.il

S. Shoham
Tel Aviv University
E-mail: sharon.shoham@gmail.com

Eran Yahav
Technion, Israel
E-mail: yahave@cs.technion.ac.il

2 Hila Peleg et al.

several real-world synthesizers. Additionally, we present two conditions for
termination of a synthesis session, one hinging only on the properties of the
available partial specifications, and the other also on the behavior of the user.
Finally, we show conditions for realizability of the user’s intent, and show the
limitations of backtracking when it is apparent a session will fail.

1 Introduction

Program synthesis is the problem of computing a program that implements a
given specification. The classic synthesis problem searches for an implementa-
tion to a full specification, usually expressed in some logic. Other variations
of the problem use a partial specification, such as input-output examples or
type information, that are easier for the user to provide.

Programming by Example (PBE) tools that accept input-output pairs as
their specification have also matured enough to be practical either on their
own [13,39,20,19,40,5,41,25,22] or as a way to refine the results of type-
driven synthesis [26,10]. PBE-based synthesis tools for end-users are available
for a wide variety of tasks from creating formulae in Microsoft Excel [13] to
formulating SQL queries [39].

When the specifications are partial, the user is often brought into the loop
to aid the synthesizer to determine the correctness of the final product and to
direct it with additional feedback in case of ambiguity. Gulwani [14] separates
synthesizers by their model of interaction with the user: (i) user-driven synthe-
sis tools, in which the user is responsible for verifying the artifact returned by
the synthesizer, and if incorrect, for providing additional specifications to the
synthesizer, and (ii) synthesizer-driven tools, in which the synthesizer poses
the user with membership queries for ambiguous examples until it has reached
a level of confidence high enough to return a program to the user as a validation
query. Counterexample-guided Inductive Synthesis (CEGIS) [37], in which a
verifier is provided with a specification, and each program from the synthe-
sizer is verified to produce either acceptance or an automatically generated
counterexample, is seen as its own category, as the interactivity is between the
synthesizer and the verifier.

Interactive synthesis Despite the fact that few user-driven tools define
themselves as interactive synthesis tools, it is important to note that inter-
activity is always inherent in the synthesis workflow: the user provides some
initial specification, runs the synthesis procedure, and is presented with an
answer. However, they may not be satisfied with this answer, which leads to
refinement of the specifications and another execution of the synthesizer. This
iterative process of candidate solution and refinement is rarely discussed, as
focus tends to remain on each single attempt to reach the user’s intended
program with as partial a specification as possible, via rankings and biases.

Interaction via predicates on programs Likewise, while each synthesis
tool usually treats the mode of specification it leverages as its own domain—
input-output examples, types, etc.—the common ground is often overlooked.

Programming by Predicates 3

Each of these modes of feedback can be seen as a predicate over programs,
and the process of providing a partial specification as constraining the space
of possible programs to those that satisfy each of the predicates. For instance,
an input-output pair (i, o), can be seen as the predicate JprogramK(i) = o.
As previous work [7,29] has shown, examples are a weak tool with which to
provide specification. The addition of other predicates in works such as [29,
26,2] allows for better separation between programs.

Finding a specification that describes a target program m∗ is a challenging
task. The most comprehensive specification that describes a target program
m∗ is every predicate available in the system that holds for m∗. To find a
reasonable specification, we rely on assistance from the user. Our modeling of
interactive synthesis incrementally considers additional predicates to refine
the specification. In this paper, we limit our scope to this form of iterative
synthesis, where the set of predicates is built monotonically.

Goal The goal of this work is to identify the parts of the synthesis interaction
model that can be improved by future synthesizer design. To do this, we inves-
tigate the theoretical foundation of interactive synthesis. We present a model
of the iterative synthesis process, centered around the interaction between the
synthesizer and a human user, and grounded in the theory of abstract interpre-
tation [6]. This model aims to capture work with a wide array of user-driven
synthesizers. We use this model to prove both existing properties of synthe-
sizers and desirable properties in future synthesis tools. Our definitions and
results are grounded in real-world examples. This model provides a theoretical
understanding of the properties of the interaction (e.g., progress, termination
guarantees) which can be applied to current and future synthesizers. We find
three aspects of the interaction that can be improved by expanding the com-
munication channel between user and synthesizer.

Existing work Previous work has modeled single iterations of different fla-
vors of synthesis [2,32], and the counterexample-guided model of synthesis
(CEGIS) [17,35]. The synthesizer-driven model of program synthesis [23] has
also been modeled via predicates, where user answers to membership queries
are translated into constraints and used to reduce the search space for the
next iteration. A learner-teacher model of program synthesis [24] has been
presented mainly to model CEGIS, but can be applied to an iterative, user-
driven synthesizer as well, with the human user taking on the role of the
teacher. However, this model provides only guarantees stemming from the
properties of the program space made available by the synthesizer, with little
consideration of the way feedback is provided to the synthesizer. For a CEGIS
model, this is sufficient, as communication between the teacher and learner is
chiefly in examples, but is unsuitable for a more generic model where feedback
formats and specification tools are multiform.

4 Hila Peleg et al.

1.1 Formal Model Approach

We formulate a model for interactive synthesis based on the notion of pred-
icates over programs. Inspired by versatility of predicate abstraction tech-
niques, we formulate our model using the theory of abstract interpretation. As
a result, we are able to use known properties of Galois connection in order to
prove properties of synthesis under our model.

An abstract domain of predicates Given a domain of programs M and
a domain of predicates on programs P, we define the concrete domain of the
synthesis algorithm to be sets of programs (2M ,⊆) and the abstract domain
to be sets of predicates (2P ,⊇), with an abstraction function that produces
the (potentially) incomputable set of all predicates that hold for the set of
programs, and a concretization function that produces the (potentially) in-
computable set of all programs that satisfy a conjunction of all predicates in
a given set. Since both these sets are likely not computable, a real synthesizer
relies on the synthesizer’s representation of the state to replace a concretiza-
tion, and the user to replace the abstraction. Section 4 formally defines these
domains and the operations on them.

Iterative, interactive synthesis In this domain, we can then define an iter-
ative synthesis algorithm as an iterative refinement (i.e., adding of predicates)
of the specification in each iteration of the process. This creates a synthesizer
state, in itself an abstract element, from which the next program displayed
to the user as a candidate solution is selected. This process, in essence, is
leveraging the user to compute the abstraction of the target program, or more
accurately, a finite subset of it. If a finite subset that underapproximates the
target exists, the synthesis session can converge regardless of the implementa-
tion. Section 5 defines an iterative synthesis session, the notion of progress by
the user, and the terms for convergence.

Properties of interactive synthesis Using this model, we show several
properties of interactive synthesis. In section 7 we define the point from which
a synthesis session can no longer converge, even if the user has, from their
point of view, only provided correct specifications, and properties of the point
we must backtrack to when that happens. Section 6 offers two separate sets
of limitations on the model that lead to convergence (i.e., a finite session) in
every session. A well-quasi-order of predicates ensures that all sessions will
terminate, and a locally strongest user condition ensures termination when
predicates only have a well-founded-ordering. We demonstrate these conditions
and properties using realistic examples.

Implications Finally, section 8 discusses the implications of these properties
for the designers of future synthesis tools, and section 9 discusses the instanti-
ation of the model in a particular interaction model, the Granular Interaction
Model presented in [29].

Programming by Predicates 5

1.2 Main contributions

The main contributions of this paper are:

– A theoretical result showing that example predicates are sometimes insuf-
ficient for reaching the desired program. We further show that real PBE
sessions exhibit this problem.

– A general model for iterative synthesis using the theory of abstract do-
mains,

– Convergence conditions for iterative synthesis sessions, based on properties
of the predicates and user behavior,

– Insights about backtracking when a session can no longer converge, and
– Recommendations for designers of future synthesis tools.

2 Preliminaries

In this work we address program synthesis. Below we provide some background
and terminology on program synthesis.

Notation of functions We interchangeably use the mathematical notation
h(g(f(x))) for the functional composition called on object x and the object-
oriented notation x.f.g.h (when Scala code is shown, a function application
with no arguments does not require parentheses).

The synthesis problem Readers familiar with software verification would
most likely recognize the common verification problem ∀ι. ϕ(ι), where ι ranges
over possible program inputs and ϕ is a property to check (safety, liveness, ter-
mination, etc.). In synthesis, the problem is commonly stated as ∃m. ∀ι. ϕ(m, ι),
where m ranges over the domain of candidate programs, and the synthesizer is
tasked with finding one program that satisfies the desired property on all in-
puts. Different tools have varying ways to define the candidate program space.
Since this space is huge even for a modest program size, sifting through it to
find a single program with the property ϕ is computationally hard.

User-driven synthesis The role of the user differs between synthesis tech-
niques. In all synthesis methods the user is responsible for providing a partial
or full specification. The difference lies in what happens when either a possible
solution or an ambiguity are encountered. The different interaction models [14]
are divided by the types of actions available in the communication between
user and synthesis procedure, and by their originator.

When the specifications are partial, as in the case of tests or input-output
samples, a function prototype, or a sketch for type-directed synthesis, addi-
tional interaction with the user is required to determine the correctness (i.e.
termination) of the algorithm and to direct it further in the case of ambiguity.

Programming by Example (PBE) is a sub-class of the synthesis problem
where all communication with the synthesizer is done using input-output ex-
amples. The classic PBE problem is defined as a set E of examples, each of
which is a pair of an input and its corresponding expected output; the result

6 Hila Peleg et al.

is a program m that satisfies every example in E . PBE has become widely
popular since examples are easier to create than full logical specifications, can
be provided in many formats from tabular data to unit tests, and can even
be created by non-programmers. Since there might be more than one program
m that matches all specifications, the iterative PBE problem was introduced.
In the iterative model, each candidate program mi is presented to the user,
which may then accept mi and terminate the run, or answer the synthesizer
with additional examples Ei that direct it in continuing the search.

As an extension, abstract examples[7] can be used to describe a (possibly
infinite) set of examples using a short description. This description usually
uses a weak abstraction mechanism, such as regular expressions.

Vocabulary and candidate program space Syntax-guided synthesis (Sy-
GuS) [2] uses a vocabulary V of grammatical constructs, e.g., constants, func-
tions, operations, and statement list, to define the possible space of programs.
We use the elements in V to construct programs as follows: given an element
f with arity k and k subprograms c1, . . . ck, f(c1, . . . , ck) is a new program.

Synthesizers that are not syntax-guided [33,9] also use provided or learned
operations, method calls, or code templates from which programs are created.
We also denote this set of provided elements V.

The candidate program space JVK is the (possibly infinite) set of all pro-
grams that can be created by V. For example, the candidate space of a SyGuS
synthesizer is JVK = {f(c1, . . . , ck) | f ∈ V, f has arity k, ci ∈ JV K}.

This naive definition includes many programs that do not compile, or that
cause a runtime error for all runs in the case of an interpreted language. Pro-
grams that do not compile may be created by the synthesizer in the exploration
of the space, but since they are not candidates for a result, the term candidate
program space will usually be used to describe all programs that compile.

Program semantics In the most abstract sense, a program m accepts input
ι and produces output ω. In programs that have effects on their environment
(sending network packets, moving a robotic arm) the environment state can
be folded into the input and output spaces; so for all purposes, we can as-
sume a definition of program semantics as JmK : D → O∪{⊥}. The special
value ⊥ indicates abnormal behavior, which may be a run-time error or non-
termination. It means there is no execution of the program with the given
input that reaches the designated “successful” exit point.

Program equivalence We say two programs m,m′ are equivalent if JmK =
Jm′K, or if the functions are equivalent. This is the same as saying ∀ι ∈
D.JmK(ι) = Jm′K(ι). Note that equivalent programs may still differ in other
measures: readability, best practices, performance, etc.

Many synthesizers use the notion of observational equivalence [1,38] to gen-
eralize the concept of equivalence: given a set of inputs I ⊆ D, an equivalence
relation ≡I is defined s.t. for a program m and a program m′, m ≡I m′ iff
∀ι ∈ I. JmK(ι) = Jm′K(ι). If I = D, this is a full equivalence between programs.
This notion is useful in approximating equivalence in the synthesis process, by
using an I of finite, managable size.

Programming by Predicates 7

3 The Need for an Abstract Model of Synthesis

This work uses predicates as the basis for interaction with a program syn-
thesizer. In this section we motivate the need for such a flexible interaction
model. To this end, we show the importance of extending the user’s answer
model beyond input-output examples, and beyond purely functional specifica-
tions in general. Every functional specification is incomplete in a similar way,
but in this section we focus on input-output examples as they are the tool
of choice for many synthesizers. We formally examine the scenario where the
user has seen an undesirable program component and would like to exclude it
specifically. We will show that this is not always possible, i.e., that examples
are insufficient to communicate some elements of the user’s intent.

We start by showing the interaction model of Programming by Exam-
ple (PBE) and its shortcomings, and then describe how a granular interac-
tion model (GIM) overcomes these shortcomings by using a richer interaction
model.

3.1 Motivating Example: Interaction with a classic PBE synthesizer

Consider the task of writing a program that finds the most frequent character-
bigram (2-character sequence) in a string. Assume that the vocabulary V con-
tains standard operations on strings, characters, and lists, designed for linear
functional composition. In addition, assume that an initial partial specification
is provided in the form of an input-output example:

σ0 = "abdfibfcfdebdfdebdihgfkjfdebd" 7→ "bd".

In this example, the bigram “bd” is the most frequent (appears 4 times),
and is thus the expected output of the synthesized program.

Table 1 shows the interaction of a programmer with a PBE synthesizer
to complete our task. The synthesizer poses a question to the programmer: a
candidate program that is consistent with all examples. The programmer pro-
vides an answer in the form of an accept, or additional input-output examples
to refine the result.

Based on the initial example, the synthesizer offers the candidate program
q1, which consists of a single method from the vocabulary – takeRight(2), which
returns the 2 rightmost characters – applied to the input. The programmer
then responds by providing the example σ1, which is inconsistent with the
candidate program, and therefore differentiates it from the target program.

At this point, the synthesizer offers a new candidate program q2, which is
consistent with both σ0 and σ1.

The interaction proceeds in a similar manner. Each additional example may
reduce the number of candidate programs (as they are required to satisfy all
examples). If the user chooses the examples carefully, the process terminates
after a total of 4 examples.

8 Hila Peleg et al.

Task: find the most frequent bigram in a string
Initial example (σ0) "abdfibfcfdebdfdebdihgfkjfdebd"7→"bd"

Question q1
1 input
2 .takeRight (2)

Problem: takeRight will just take the right of a given string
Idea: the frequent bigram needs to be placed in the middle
Answer σ1 "cababc"7→"ab"

Question
q2

1 input
2 .drop (1)
3 .take (2)

Problem: this program crops a given input at a constant position
Idea: vary the position of the frequent bigram between examples
Answer σ2 "bcaaab"7→"aa"

Question
q3

1 input
2 .zip(input.tail)
3 .drop (1)
4 .map(p => p._1.toString + p._2)
5 .min

Problem: in all examples the output is the lexicographical minimum of all
bigrams in the string (e.g., "aa" < "bc", "aa" < ca", "aa" < "ab")
Idea: have a frequent bigram that is large in lexicographic order
Answer σ3 "xyzzzy"7→"zz"

Table 1 The difficulty of finding a differentiating example.

Finding differentiating examples may be hard Consider the candidate program
q3. To make progress, the user has to provide an example that differentiates q3
from the behavior of the desired program. If the specification included a logical
formula specifying the desired behavior in full, then, as in counterexample-
guided synthesis [35] the synthesizer could find an input where the program
differs from the specification, but without it, this burden falls on the user. To
find a differentiating example, the user must (i) understand the program q3
and why it is wrong, and (ii) provide input-output examples that overrule q3,
and preferably also similar programs.

By examining the code of q3, it is easy to see that min is a problem: calcu-
lating a minimum should not be part of finding a most frequent bigram. Even
after understanding the problem, the programmer must still find a differentiat-
ing example that rules out q3. Because the min in q3 takes the (lexicographical)
minimum from a list of the bigrams in the input, the programmer comes up
with an example where the desired bigram is the largest one, as in σ3.

In this interaction, the programmer had to express the explicit knowledge
(“do not use min”) implicitly through examples. Coming up with examples
that avoid min requires deep understanding of the program, which is then only
leveraged implicitly (through examples). Even then, there is no guarantee min

will not recur: as we will show in Section 3.2, it cannot be removed completely
in this model. In this case, since the programmer already knows that programs
using min should be avoided, this information is best communicated explicitly
to the synthesizer.

Programming by Predicates 9

3.2 The Insufficiency of Examples

In the PBE session shown in the previous section, the user encounters the
function min, which they believe should never be part of a result of the session.
However, simply providing an example to rule out the current program might
not be enough to remove min from all candidates to ensure it never recurs.
We now formally prove it is impossible to completely remove methods like min

from the search space using examples.
Section 2 defines the equivalence relation used in observational equivalence:

m1 ≡I m2 iff ∀ι ∈ I.Jm1K(ι) = Jm2K(ι). Since this is an equivalence relation
over programs, it also creates a partition of the space, M/ ≡I , according to
the behavior on I.

Now let us consider the equivalence relation ≡D, over D, the entire input
domain. This relation divides the candidate program space into the smallest
observational equivalence classes possible, i.e., classes of completely equivalent
programs. They differ in other measures: readability, best practices, perfor-
mance, but observationally are the same. Intuitively, this means each itera-
tion providing a new example refines the partition, and at the limit, the most
refined partition possible is represented by ≡D.

Let us assume a program m containing some undesirable v ∈ V. If m is
functionally equivalent to m∗, then for any example set E , and I = {ι | (ι, ω) ∈
E}, m ≡I m∗, which means m will be in the equivalence class of m∗, and there
exists a run of the synthesizer that returns m instead of m∗.

We state the following claim:

Proposition 1 Let v ∈ V be a vocabulary element such that there exists a
program m that is equivalent to m∗ and contains v. Then examples alone
cannot rule out v from the equivalence class of m∗.

Proposition 1 is applicable to different kinds of differences that might exist
between two programs in the same equivalence class in ≡D: best practice
differences (which may even vary between two projects), different runtime
complexities, or programs containing redundant code. We focus on redundant
code, and specifically on two methods to create redundant code in a program:
invertible methods and nullipotent methods.

– Invertible methods are methods with an inverse that, when applied in se-
quence lead back to the initial input. For instance, reverse on a list is
invertible and its own inverse, as in.reverse.reverse will be identical to in.
An invertible method can always be added to the target program along
with its inverse, resulting in an equivalent program.

– Nullipotent methods are methods that, when applied, lead to the same
result as not being applied. While this is often context-sensitive, e.g. calling
toList on a list or mkString on a string, there are calls that will always be
nullipotent, such as takeWhile(true). Because some methods are nullipotent
only in a certain context, they may be in a synthesizer’s vocabulary, and
end up in the program space in contexts where they are nullipotent. It

10 Hila Peleg et al.

is easy to construct a program that contains nullipotent methods and is
equivalent to the target program.

If we examine the programs in Table 1, we notice the user trying to rid
themselves of a component from V, the call to min. The target program of the
synthesis session is the Scala program

input.zip(input.tail).map(p => p._1.toString + p._2). groupBy(x => x)
.map(kv => kv._1 -> kv._2.length).maxBy(_._2)._1

Let us now construct an equivalent program by appending to it an invertible
pair of functions in sequence: sliding(2).min. The function sliding(2), when
applied to a string of length 2 will return List("dc"), and min when applied to
list of size 1 will return the only member of the list. This means there is a
program that is equivalent to m∗ on every input, and contains min. As such,
given any number of examples applied min, a letter from V, will not be ruled
out entirely.

This construction is possible for many target programs, under many vocab-
ularies, showing that it is often impossible to discard an undesirable member
of the alphabet or an undesired sequence using examples alone.

Furthermore, since many existing PBE synthesizers prune very aggressively
based on observational equivalence, or equivalence based only on the given
examples, programs that do not include the undesired component may not be
available anymore as they have been removed from the space.

It’s easy to consider synthesis from a purely functional standpoint, and see
the iterative PBE process as sufficient: every time a programm that is returned
from the synthesizer is not functionally correct, there exists an example (ι, ω),
and by extension a set of examples Ii which will separate m and m∗ into two
equivalence classes.

Every time the user provides a new example (ι, ω) that rules out the current
candidate program m, or in other words JmK(ι) 6= ω, this creates a refinement,
(≡I∪{ι}) ((≡I), that breaks up at least one observational equivalence class—
that from which the candidate program was taken: the program m does not
uphold (ι, ω) and will be part of one equivalence class, while m∗, the target
program, does uphold (ι, ω) and will be part of another. If the equivalence
class of m∗ in this partition contains undesirable programs, the partition is
simply not refined enough.

Proposition 2 A program from the equivalence class of the target program
m∗ that is returned by Select cannot be ruled out by examples alone.

We can now see that the impossibility in Proposition 1 is subsumed by
Proposition 2. If the program returned by the synthesizer (in future sections
we will refer to this as Select) is in the observational equivalence class of
the target program under ≡D, the undesirable program cannot be ruled out.
This means that if the user is to apply their knowledge on best practices,
performance or readability, a refinement that goes beyond examples is needed.
We add to this the scenario shown in Section 3.1, which shows that even in
cases where the equivalence class of the target program has not been reached

Programming by Predicates 11

Task: find the most frequent bigram in a string
Initial

"abdfibfcfdebdfdebdihgfkjfdebd"7→"bd"
specifications

Question
q1

1 input //" abdfibfcfdebdfdebdihgfkjfdebd "
2 .takeRight (2)//bd

Problem: takeRight will just take the right of a given string
Idea: takeRight will never be useful since we always want to consider
every element. Remove takeRight from the result program.
Answer Remove(takeRight(2))

Question
q2

1 input //" abdfibfcfdebdfdebdihgfkjfdebd "
2 .drop (1)//" bdfibfcfdebdfdebdihgfkjfdebd "
3 .take (2) //"bd"

Problem: this program crops a given input at a constant position
Idea: we don’t want to crop anything out, so these functions have no place
in the result program.
Answer Remove(drop(1).take(2))

Question
q3

1 input //" abdfibfcfdebdfdebdihgfkjfdebd "
2 .zip(input.tail) // List ((a,b),(b,d),(d,f) ,...
3 .take (2) // List ((a,b),(b,d))
4 .map(p => p._1.toString + p._2) // List ("ab","bd")
5 .max //"bd"

Problem: while the beginning of this program is actually good (dividing
the program into bigrams) and so is the mapping of a 2-tuple to a string,
take(2) truncates the bigram list.
Idea: preserve what is good in the program and remove take(2) on its
own and not just as part of a sequence.

Answer
Affix(zip(input.tail))
Remove(take(2))
Retain(map(p => p. 1.toString + p. 2))

Table 2 Providing granular, syntactic feedback.

there is value to allowing the user to communicate more detailed information
to the synthesizer.

The practical implications of Proposition 1 are discussed in [29], which
examines the existence of method sequences deemed undesirable by users in
candidate programs. The data as well as opinions collected from users show
that the inability to remove an undesirable letter from the alphabet has real-
world consequences, which add to the user’s frustration with the synthesizer.
In users that performed PBE session in the user study, undesirable sequences
of methods appeared up to 7 times in a single user session and, on average,
about 3 times in each session. This shows that the inability to remove a letter
or sequence is neither a purely theoretical problem, nor a problem leading
only to equivalent rather than correct programs, but a real distraction from
the ability to synthesize over an expressive vocabulary. The user study also
showed that in several of the tasks, PBE users ended up accepting a program
with superfluous elements.

These results bring us to the need to define a more expressive, granular
model.

12 Hila Peleg et al.

3.3 Interaction through a granular interaction model

GIM improves PBE by employing a richer, granular interaction model with
additional feedback predicates. On the one hand, the synthesizer supplements
the candidate programs by debug information that assists the programmer
in understanding the programs and identifying their good and bad parts. On
the other hand, the user is not restricted to providing semantic input-output
examples, but can also mark parts of the program code itself as parts that
must or must not appear in any future candidate program. This allows the
user to provide explicit, syntactic, feedback on the program code, which is
more expressive, and in some cases allows the synthesizer to more aggressively
prune the search space.

The GIM interaction for the same task of finding the most frequent bi-
gram is demonstrated in Table 2. Question 1 is as before: the synthesizer pro-
duces the candidate program input.takeRight(2). In contrast to classic PBE,
the granular interaction model provides additional debug information to the
user, showing intermediate values of the program on the examples. This is
shown as comments next to the lines of the synthesized program. For q1, this
is just the input and output values of the initial example. In the next steps
this information will be far more valuable.

Given q1, the programmer responds by providing granular feedback. Using
GIM it is possible to narrow the space of programs using syntactic predicates
on programs, in a domain where m = fn(fn−1(. . . input . . .)):

1. exclude(fi, . . . , fj) where i ≤ j: will hold only for programs m where
¬∃k.f ′k = fi ∧ · · · ∧ f ′k+i−j = fj

2. retain(fi, . . . , fj) where i ≤ j: will hold only for programs m where ∃k.f ′k =
fi ∧ · · · ∧ f ′k+i−j = fj

3. affix(f0, . . . , fi): will hold only for programs m where ∀j ≤ i.fj = f ′j .

Presented with input.takeRight(2), the user can exclude a sequence of op-
erations from the vocabulary, in this instance takeRight(2), ruling out any pro-
gram where takeRight(2) appears. This also significantly reduces the space of
candidate programs considered by the synthesizer.

The synthesizer responds with q2. Note that in such cases the debug in-
formation assists the programmer in understanding the program, determining
whether it is correct, or, as in this case, identifying why it is incorrect. To rule
out q2, the user rules out the sequence drop(1).take(2), as the debug informa-
tion shows the effect (“take the second and third character of the string”), and
the user deems it undesirable at any point in the computation to truncate the
string, as all characters should be considered.

The synthesizer responds with q3. This candidate program contains some-
thing the programmer would like to preserve: the debug information shows
that the prefix input.zip(input.tail) creates all bigrams in the string. The user
can mark this prefix to affix, or to make sure all candidate programs displayed
from now on begin with this prefix. This removes all programs that start with
any other function in V, effectively slicing the size of the search space by

Programming by Predicates 13

|V|. Another option (multiple operations stemming from the same program
are not only allowed but encouraged) is to exclude take(2) since the resulting
truncation of the list is undesirable.

Eventually, the synthesizer produces the following program:

1 input //" abdfibfcfdebdfdebdihgfkjfdebd "
2 .zip(input.tail)// List ((a,b),(b,d),(d,f),(f,i),(i,b),(b,f) ,...)
3 .map(p => p._1.toString + p._2)// List ("ab","bd","df","fi","ib " ,...)
4 .groupBy(x => x)// Map ("bf"->List ("bf"),"ib"->List ("ib ") ,...)
5 .map(kv => kv._1 -> kv._2.length)// Map ("bf"->1,"ib"->1,"gf"->1,...)
6 .maxBy(_._2)//("bd",4)
7 ._1//"bd"

which does not discard any bigram, counts the number of occurrences, and
retrieves the maximum. This program is accepted.

In order to support GIM, we need to augment synthesis to allow its feed-
back predicates, exclude, retain, and affix. In the following sections, we will
present a general model for interactive synthesis which allows general pred-
icates on programs, including the GIM predicates presented in this section,
predicates on types, and, of course, examples.

4 Foundations for Synthesis with Abstract Domains

In the following few sections, we formalize interactive synthesis using abstract
domains, where the role of the user is to strengthen the abstraction of the
target program, while the role of the synthesizer is to concretize the abstraction
and pick a concrete element from it as a candidate program. To do so, we start,
in this section, by formalizing a single iteration that consists of a user providing
a spec as input and the synthesizer returning a program.

Let us consider U the domain of all programs, in all languages. Out of
these, only a subset is available to the user via the synthesizer. We denote
this, our program search space, M ⊆ U .

User-driven synthesis is guided by the concept of a target program in the
user’s mind. We denote U∗ ⊆ U the set of programs that satisfy the user’s
concept of a correct program, and M∗ = U∗ ∩M , the subset of U∗ that is in
the synthesizer’s search space. A user’s intention is realizable if M∗ 6= ∅. It is
important to notice for the remainder of this paper that M∗, while a subset
of the synthesizer’s search space, is not actually known to the synthesizer.

In order to encode the specification, let us also consider a (possibly infinite)
set P of predicates over programs. We assume that every p ∈ P is decidable.
When considered against some set of programs T , each predicate p ∈ P defines
a subset of programs from T that satisfy it, denoted {m ∈ T | m � p}. In this
way, the same set of predicates P can define subsets of both M and U . In
this sense, the predicates can be viewed as formulas, and the programs as
structures. We do not, however, assume or use any internal structure of the
predicates in this paper.

In particular, we will use predicates in implication modulo a theory of
programs. We write p ⇒T q to denote ∀m ∈ T. m � p ⇒ m � q. The same
extends to a set of predicates, A⇒T q, to mean their conjunction.

14 Hila Peleg et al.

The remainder of this paper assumes working with a specific P and a
specific M , and that the user is seeking a specific M∗. This means all the
definitions that follow are parametric in M and P, and when used also in M∗.

4.1 An abstract domain for programs

Our concrete domain consists of the powerset lattice (2M ,⊆) (where the least
element is ∅ and the greatest element is M). That is, each concrete element is
a set of programs, and the sets get smaller when lower in the lattice.

During the synthesis process, the synthesizer represents (or abstracts) sets
of programs from the concrete domain using sets of predicates from P. For-
mally, let A = 2P . The synthesis process uses an abstract domain that consists
of the powerset lattice (A,v), where v is defined as ⊇. That is, each abstract
element is a set of predicates (interpreted as a conjunction), and the sets get
larger (or more constrained) when lower in the lattice. Join, meet, bottom,
and top are defined as they usually are in the powerset domain: For two ab-
stract elements A1, A2 ∈ A, meet is defined as A1 uA2 = A1 ∪A2 and join as
A1 tA2 = A1 ∩A2. Further, > = ∅ and ⊥ = P.

From here on, we refer to A ∈ P as elements in the lattice and as sets
of predicates interchangeably. Which one we mean should be clear from the
context (e.g.., the operators used).

Galois connection We would like an abstract element A ∈ A to represent
the set of programs s ∈ M for which every predicate p ∈ A holds. To do so,
we define a Galois connection between (2M ,⊆) and (A,v).

Definition 1 (Abstraction) For a single program m ∈ M , we define the
abstraction function β(m) = {p ∈ P | m � p}, which abstracts m into the set
of all predicates that hold for m. From this we define for a set of programs
C ⊆M the abstraction α(C) =

⊔
m∈C β(m) = {p ∈ P | ∀m ∈ C.m � p}.

This is similar to the abstraction performed by Houdini [11], Daikon [8], and
D3 [28].

Definition 2 (Concretization) For an abstract element A ∈ A, we define
the concretization function γ(A) = {m ∈M | ∀p ∈ A. m � p}, or all programs
for which all constraints in A hold.

It is easy to verify that (α, γ) is a Galois connection.

Recall that in the abstract domain, ⊥ = P and > = ∅. Therefore, γ(>) =
M , which means that the top element represents all valid programs in M ,
as desired. On the other hand, γ(⊥) is not necessarily the empty set, since
there might be valid programs that satisfy all predicates in P. However, in
the typical case, P contains contradicting predicates (e.g., a predicate and its
negation, or examples mapping the same input i to different outputs o1 6= o2),
in which case γ(⊥) represents an empty set of programs.

Programming by Predicates 15

Reducing the search space The non-interactive, single-step, synthesis
problem can now be described as one for which the input is a (partial) speci-
fication of the target program in the form of an abstract element A ∈ A, and
the output is some program from the set of programs it describes. The selec-
tion is (usually) not random, but rather influenced by internal representation
in the synthesizer, as well as ranking functions. To reason about the synthe-
sizer’s role, we define Select : A → M ∪ {⊥}, the synthesizer’s operation of
finding such a program. Select(A) amounts to picking a concrete element from
γ(A), or returning ⊥ if no such element exists; hence, it can be understood
as partially concretizing the abstract element. The implementation of Select
is dependent on the synthesis algorithm being used.

4.2 Examples

Type-directed synthesis as an abstract domain A widely used domain
of predicates is a domain of type information. When creating a procedure via
type-directed synthesis, the specification to the synthesis procedure is provided
via type predicates for the procedure’s formals (name, τ) ∈ Formals×T and
a desired return-type predicate, τret ∈ T which will hold according to the v
relation on types. A similar specification is used for type-directed synthesis
that produces code snippets: the same τret specifies the target type (usually
assigned to a variable) and the available variables are specified using type
predicates (name, τ) ∈ V ars× T for local variables V ars.

PBE as an abstract domain Another frequently used domain of predicates
is the domain of input-output examples. Recall that each program m defines
a function, JmK : I → O ∪ {⊥}, that maps inputs to outputs (or to error).
Programming by example considers the predicates P = I×O, where each pair
(ι, ω) ∈ P dictates that for input ι, the program outputs ω. For this purpose,
we define m � (ι, ω) ⇐⇒ JmK(ι) = ω.

Syntactic feedback as an abstract domain [29] introduces a domain of
predicates that provide syntactic restrictions on programs, intended for use
by programmers. For instance, an retain(f) predicate which holds only for
programs that make use of a function or operator f , or exclude(f) which
holds only when they do not. For linear functional programs, such as those
used in the later part of this paper, these operators can also be generalized
to sequences of methods, either as a continuous subsequence—exclude(f · g)
will hold only for programs where f is not immediately followed by g—or for
general subsequences—exclude(f ·g) will hold for programs where there are no
i < j s.t. fi = f, fj = g. Section 3.3 defines exclude over continuous sequences,
as in [29].

16 Hila Peleg et al.

4.3 Computability of the model

We notice that, in general, both α and γ are non computable: α because P
may be infinite; and even though any A provided by the user will always be
a finite set, γ may still not be computable as a finite set of predicates may
return an infinite subset of an infinite M . Because of that, neither of them is
used directly by any concrete implementation of the model. Concretization is
only performed as part of a Select(A) operation, representing the synthesizer’s
generation of a program based on its description of the reduced program space
A, which need not actually create the concrete set of programs represented by
A. In synthesizers based on version space algebra (VSA) [21], for instance,
only a representation of the space of all programs is constructed, from which
a single concrete program is then selected.

Abstraction is also never performed by the algorithm, but rather by the
user: the target programs, M∗, as envisioned by the user, are described in the
input specification A by the selected predicates. This is less precise than a full
(and possibly infinite) α({m∗}) of some m∗ ∈M∗, but in an iterative synthesis
process can be refined by the user when the result is insufficient, which means
that the synthesizer state (representing the accumulated user input) comes
closer to α({m∗}) with each iteration. (Note that unlike a classical abstraction
framework [6], where it is important to soundly abstract the entire set M∗, in
synthesis it suffices to abstract some nonempty subset of M∗.)

Intuition If the user could produce a full specification S∗ ⊆ P (or as full as
P allows), satisfying it could be a matter of arbitrarily selecting any program
from γ(S∗). However, since creating full specifications is hard or even impos-
sible, the process of interactive synthesis, which will be described in the next
section, is essentially building up to a fuller specification in every iteration.
The user adds new specifications to rule out each undesirable candidate pro-
gram, and the meet operation collects added specifications into the synthesizer
state, which at the limit will reach S∗.

5 An Abstract Model of Interactive Synthesis

Section 4 discussed a model for a single iteration of synthesis. We now wish to
describe the iterative process that exists, even if implicitly, in most synthesiz-
ers. In it the user will keep adding to the specifications given every time the
synthesis procedure offers an unsatisfactory candidate. We formulate this as
questions (candidate programs) and answers (additional specifications).

Definition 3 (Synthesis session) A synthesis session is a sequence of steps
by the user and synthesizer S = (A0, q1), (A1, q2), . . . such that qi ∈M ∪ {⊥}
are synthesizer questions and Ai ∈ Pfin(P) ∪ {⊥} are user answers, where
Pfin(P) is the set of all finite subsets of P and ⊥ signifies a forced contradiction.
We denote A0 the initial specifications provided by the user.

Programming by Predicates 17

Within a synthesis session we define the state of the synthesizer via the
constraints on it provided by the user, as follows:

Definition 4 (Synthesizer state) The state of the synthesizer S ⊆ P is an
abstract element describing the portion of the search space requested by the
user. If the user has given feedback for i iterations in the form of the elements
A0, A1, . . . , Ai ⊆ P, the state after i iterations of feedback is Si =

⋃
0≤j≤iAj .

Interactive synthesis can now be formalized as a process in which both
the state of the synthesizer and the interaction between the synthesizer and
the user are based on abstract elements. In step i, the synthesizer selects a
program qi ∈ M using Select(Si−1), and poses qi as a validation question to
the user. The user accepts or rejects the program. In case of rejection, the user
responds with an answer Ai ∈ A in the form of an abstract element which
consists of one or more predicates out of P. Given the user’s answer Ai, the
new state of the synthesizer in step i + 1 is set to Si+1 = Si u Ai+1, thus
narrowing the set of concretizations to consider. Or, in other words, we can
now define Si+1 =

d
0≤j≤i+1Aj . The search is over either when Select returns

nothing because γ(Si) = ∅ and represents no programs, or when the user is
satisfied and accepts the program.

Notice that, unlike the classical use of abstraction, where the intent is
to describe as many concrete states as possible, and so new information is
appended via join, here our purpose is to refine, and so we use meet.

Synthesis users In order to reason about iterative synthesis, we must define
the user’s behavior. We have already defined U∗ the set of programs in U the
user is willing to accept, as well as M∗, the intersection between the user’s
concept of the target program and the search space of the synthesizer. We now
add guarantees for the iterative behavior:

Definition 5 (User correctness) A user step, providing Ai as an additional
specification, is correct when Ai ⊆ {p ∈ P | ∃m ∈ U∗.m � p}.

Correctness means the user will not provide predicates that are inconsistent
with their idea of the target. Notice that this set of predicates may still contain
a contradiction, as it contains predicates of different programs, and that even
if no explicit contradiction exists, subsets of it may still concretize to ∅ over
the domain M .

According to definition 5, a correct user may still provide predicates that
hold for some, but not all, of U∗. This may seem unintuitive, but realistically
occurs because (a) U∗ may not be sufficiently described with predicates from
P, but a subset of it may, (b) given a current candidate program m, the user
sets a trajectory for the synthesis procedure and makes local decisions that
may rule out some programs in U∗, or conflict with other (similarly local)
decisions made in the past.

Definition 6 (Synthesis user) The behavior of the user includes the fol-
lowing guarantees:

18 Hila Peleg et al.

1. The user is correct for as long as they can be. If the user can no longer
provide an answer that is correct, they will answer ⊥.

2. If a user sees a program in M∗, they will accept it.

Finally we define a feasible synthesis session as a session that can be reached
by the actions of a user and a synthesizer:

Definition 7 (Feasible synthesis session) A feasible synthesis session is
a synthesis session S = (A0, q1), (A1, q2), . . . that satisfies the following:

(a) All Ai are correct steps (definition 5) or ⊥,
(b) qi = Select(Si−1), i.e. qi ∈ γ(Si−1) ∪ {⊥}, where ⊥ signifies no possible

program,
(c) If qn ∈M∗ ∪ {⊥} then S is finite and of length n, and
(d) In a finite S of length n, qn ∈M∗ ∪ {⊥}
where item b is a requirements for synthesizer correctness, and items a, c and d
are requirements for user correctness.

Remember that additionally, from the definition of Select, if S is finite of
length n, then qn = ⊥ ⇐⇒ γ(Sn−1) = ∅.

These mean that a feasible synthesis session is either (i) infinite, (ii) ends
by returning ⊥, (iii) or ends with the user accepting qn the last program.

For the remainder of this paper we are only interested in feasible synthesis
sessions.

Definition 8 (Convergence) A synthesis session (A0, q1), (A1, q2), . . . , (An−1, qn)
is said to converge if γ(Sn) ⊆M∗. It has converged successfully if γ(Sn) 6= ∅.

When a session has terminated with any result other than ⊥, this will mean
that the user accepts qn, but convergence is in fact a stronger condition. This
is because definition 7(d) can refer to a case where the synthesizer has offered a
program out of M∗ at any point in the session, because of the implementation
of Select, ranking, or domain knowledge, thereby causing the session to end
immediately. Convergence, on the other hand, ensures that regardless of the
implementation of Select, a program from M∗ will be returned (or no program
at all). This definition reflects the fact that, unlike classical abstraction frame-
works, where one seeks an overapproximation of the target that is “precise”
enough, convergence of a synthesis procedure requires an underapproximation
of the target. For successful convergence, that underapproximation must be
nonempty. From this point onward we will be mostly interested in the worst-
case implementation of Select, where the session either converges or is infinite.

5.1 Progress-making sessions

The first basic property needed in order to explore convergence is that the
synthesis session is progressing—refining not only the abstract element of the
synthesizer state but also its concretization in the program space. We consider
two kinds of progress, weak and strong, differing by the effect of the step on the
synthesizer state. Section 6 will leverage progress into results on termination.

Programming by Predicates 19

Definition 9 (Weak progress) A user answer Ai is said to create weak
progress in iteration i of a synthesis session if γ(Si−1 u Ai) (γ(Si−1). This
means that Ai has ruled out at least one program from M described by Si−1 .

We say a synthesis session makes weak progress if every user answer Ai in
the session makes weak progress.

Note that it is not enough to demand that Si−1 u Ai A Si−1: the user
can provide a predicate p that rules out no program in γ(Si−1), which means
γ(Si−1) = γ(Si) but since it was not given before by the user, Si−1uAi A Si−1.

Lemma 1 (Weak progress by implication) User answer Ai in iteration
i of synthesis session makes weak progress if and only if Si−1 6⇒M Ai.

Proof Let S be a synthesis session. Step i makes weak progress ⇐⇒ γ(Si−1u
Ai) (γ(Si−1) ⇐⇒ ∃m ∈ M.m ∈ γ(Si−1),m 6∈ γ(Si−1 u Ai) = γ(Si−1) ∩
γ(Ai) ⇐⇒ ∃m ∈ M.m ∈ γ(Si−1),m 6∈ γ(Ai) ⇐⇒ ∃m ∈ M.∀p ∈ Si−1.m �
p,∃p ∈ Ai.m 6� p ⇐⇒ ∃p ∈ Ai.Si−1 6⇒M p ⇐⇒ Si−1 6⇒M Ai. ut

Lemma 1 gives us a test for the synthesizer to apply should the creators of
the synthesizer wish for it to enforce progress in every iteration.

Example 1 Let us examine predicates used for providing positive feedback. In
PBE this might be an example that reinforces some behavior that is good in the
current program. In other predicates this might be okaying a syntactic portion
on the program, or in other words, asking the synthesizer to keep something for
future programs. Another option is approving of an intermediate value of the
program for a specific input—something which holds for the current program.

All of these, while not ruling out the current program, may rule out other
programs in the space. This means that in a synthesizer which enumerates
the entire space of M in some order, the same qi will be displayed as qi+1.
However, since the portion of the program space represented by Sn is different,
some implementations of Select may return a different program.

Definition 10 (Strong progress) A user answer Ai is said to create strong
progress in the synthesis session if qi 6∈ γ(Si−1 u Ai), or in other words, if
α({qi}) 6v Ai.

We say a synthesis session makes strong progress if every user answer in
the session makes strong progress.

Definition 10 is stronger than that defined in definition 9 as it ensures the
user will not be shown the same program again, regardless of the implementa-
tion of Select. If Select has some preference bias—such as an ordering over the
programs—then non-strong progress will essentially lead to the same program
being returned; however, we do not preclude the general case where changing
the specification in any way or even just re-running the synthesizer may yield
a different program.

20 Hila Peleg et al.

Example 2 The FlashFill implementation in Microsoft Excel [13] allows only
predicates that would cause strong progress. Specifically, as the program can-
didate in each iteration of FlashFill is executed on the entire dataset and the
results are shown to the user. The user can then make changes to records
where the result of the executed program is not the desired result. This
means that the set of predicates available to the user at iteration i is not
any {(r, o) | r is a record in the table}, but only {(r, o) | JqiK(r) 6= o}. Since
every p ∈ Ai necessarily rules out qi, this is an even stronger requirement than
that of strong progress in definition 10.

Due to our assumption on the user correctness, the strong progress require-
ment can be equivalently formulated by requiring the user to use at least one
predicate that differentiates qi from M∗:

Definition 11 (Diff) We define the diff between two programs m1,m2 ∈M
in the program space over the set of available predicates to be diff (m1,m2) =
{p ∈ P | m2 � p ∧m1 6� p} = β(m2) \ β(m1).

Lemma 2 (Correct strong progress by differentiating predicate) A
correct user answer Ai in iteration i + 1 of a synthesis session makes strong
progress if and only if Ai ∩

⋃
m∈M∗ diff (qi,m) 6= ∅.

While progress is a natural requirement to make, it may not always be
obtainable with the available predicates. There may simply not be predicates
with which to rule out the current program, for instance, but, most often, there
is simply no correct step with which to continue the session. Next, we define
the result of the clash between progress and correctness and demonstrate a
scenario where it manifests:

Definition 12 (Non-progress point) Iteration i is a weak non-progress
point (resp. strong non-progress point) if any predicate p that would cause
weak (resp., strong) progress is incorrect, i.e., ∀m ∈ U∗.m 6� p.

In the sequel, we simply refer to a “non-progress point” since the weak/strong
qualifier is determined by the kind of interaction enforced by the synthesizer.

If iteration i is a non-progress point, then by correctness the user is forced to
answer ⊥. In practice, this means iteration i+ 1 will necessarily be (⊥P ,⊥M).

Example 3 Consider a domain of programs and a set of predicates P = {exclude(f) |
f ∈ V} ∪ {include(f) | f ∈ V} over some vocabulary of methods V. The user
is looking for a program that will provide them with the second element of a
list of strings. Let us assume that U∗ = M∗ = {input.tail.head}, and that the
user is shown qi =input.head.tail.

If the current synthesizer enforces strong progress, the user is now at an
impasse: includes are a form of positive feedback, approving of something in
the current program. While they may rule out some program in the synthesizer
state, they will not rule out qi. However, with the given set of predicates, either
option that will make any progress, exclude(head) and exclude(tail), will violate
correctness, and will cause Si ∩M∗ = ∅.

Programming by Predicates 21

6 Termination

In general, a synthesis session may never terminate. For instance, it is easy to
show using this model that PBE may never terminate: let us assume the user is
searching for a program where conversion from polar to cartesian coordinates is
required. The user will provide some examples for desired input-output pairs,
and a program that applies the sine function to implement the conversion
will be part of the synthesizer state, but no matter how many examples are
provided, there will still be programs that use some interpolated polynomial
instead of sine, thereby keeping γ(Si) from ever reaching M∗.

We now show two conditions for termination for synthesizers, based on
properties of their predicates. The first is a condition for both strong and
weak progress sessions, demanding a strong requirement from the synthesizer,
a well-quasi-ordering of the predicates. The second is a condition for synthesis
sessions that make strong progress, and is modeled on a property similar to
well-quasi-order’s finite basis property. In it, we can weaken the requirement
on the predicates, but in exchange add a requirement from the user.

6.1 WQO predicates

We first show that termination can be guaranteed using the theory of well-
quasi-ordering:

Definition 13 (Well-quasi-order [18]) Let 5 be quasi-order on X (i.e.,
5⊆ X×X is a reflexive and transitive relation). By convention, x > y denotes
y 5 x ∧ x 65 y. The following definitions are equivalent:

(1) 5 is a wqo over space X
(2) In every infinite sequence x1, x2, . . . there exist i < j s.t. xi 5 xj , and
(3) X satisfies both: (a) every sequence x1 > x2 > . . . is finite (the strictly

descending chain condition, also known as well-foundedness), and (b) every
sequence x1, x2, . . . with xi 65 xj for i 6= j is finite (the incomparable chain
condition, also known as the antichain condition).

Theorem 1 Let p � p′ ⇐⇒ p ⇒M p′. If � is a well-quasi-ordering over
the set

⋃
m′∈M∗ β(m′), then any synthesis session that makes (weak or strong)

progress will always converge in a finite number of steps.

Proof Since every strong progress session also makes weak progress, it suffices
to prove the theorem for weak progress sessions.

Let us assume, by way of contradiction, that S is an infinite synthesis
session that makes weak progress. We construct the infinite sequence p0, p1, . . .
such that pi is some progress-making predicate from Ai. Since S makes weak
progress, we know that Si−1 6⇒M pi (Lemma 1) and in particular, for every
p′ ∈ Si−1, p′ 6⇒M pi. From definition 4, ∀pj .j < i ⇒ (pi 6⇒M pj), or in other
words, ∀pj .j < i⇒ (pi 6� pj). But since � is a wqo, in every infinite sequence
∃i, j.i < j ∧ pi � pj (from definition 13(b)), leading to a contradiction. This
means a session must be finite, i.e. converge. ut

22 Hila Peleg et al.

From this, if the entire predicates set P is a wqo, then the synthesizer will
terminate for every M∗.

Example 4 While it is easy to see that examples are not a wqo, as the en-
tire domain is incomparable, there are domains of predicates that do create
a wqo. For instance, a family of syntactic predicates exclude(f1 · · · f2 · · · fn)
that exclude programs containing a specific subsequence of function calls (not
necessarily consecutive) will be a wqo over the domain of linear programs [16].
In this domain, a user can express feedback such as exclude(close · · · read),
thereby ruling out every program that creates a read-after-close error.

6.2 Locally strongest user

In this subsection, we relax the well-quasi-order requirement on the predicates,
and prove another termination property by assuming some locally-optimal
property of the user.

Definition 14 (Well-founded-order) We say that ≤ is a wfo over X if it
satisfies the strictly descending chain condition in definition 13(c) (but not
necessarily the incomparable chain condition).

Definition 15 (Base set) Let S ⊆ P be a set of predicates. We define the
base of S, Base(S) = {p ∈ S | ∀p′.p′ ⇒M p⇒ p = p′}, i.e.the set of strongest
predicates in S.

In order to simplify we assume P does not contain equivalent predicates.
Let us now add a new restriction on the user, which strengthens the strong

progress requirement of the synthesizer:

Definition 16 (Locally strongest user) Given a candidate qi 6∈M∗, a lo-
cally strongest user will answer withAi such thatAi∩

⋃
m′∈M∗ Base(diff (qi,m

′)) 6=
∅. That is, at least one predicate in the answerAi will be taken from Base(diff (qi,m

′))
of some target program m′ (where the latter means that no stronger predicate
exists in diff (qi,m

′)).

In other words, a locally strongest user will always make progress using the
most effective (i.e., strongest) predicates available. This means that, for in-
stance when using the exclude predicate for continuous sequences within the
framework defined in [29] and shown in Section 3.3, given a choice between
two sequence exclusion predicates exclude(drop) and exclude(drop · take), if they
are both relevant, the user will select the one making more impact – which is
the sensible choice, as excluding the subsequence when the individual function
is undesirable could cause it to appear again.

We notice that in case the sets of predicates in question have an infinitely
decreasing (i.e., infinitely getting stronger) sequence of predicates, this restric-
tion on the user is at odds with correctness: no predicate from the infinite
decreasing sequence will be represented in its base set, which means the user

Programming by Predicates 23

may have a correct predicate available to them from
⋃
m′∈M∗ diff (qi,m

′) but
no action in the union on the base sets.

To counteract this, we would like to make sure every chain of predicates
would have a strongest element to add to the base set. We therefore add
a requirement for

⋃
m′∈M∗ β(m′) to be a well-founded order. The following

lemma shows that if
⋃
m′∈M∗ β(m′) is a wfo, then a correct user that is able to

make strong progress can also be locally strongest, i.e., it will never get stuck
due to inability to find a “strongest” predicate.

Lemma 3 Let p � p′ ⇐⇒ p⇒M p′. If � is a wfo over
⋃
m′∈M∗ β(m′), then

whenever
⋃
m′∈M∗ diff (qi,m

′) 6= ∅, we have that
⋃
m′∈M∗ Base(diff (qi,m

′)) 6=
∅ as well.

Proof First note that if � is a wfo over
⋃
m′∈M∗ β(m′), then it is also a wfo over⋃

m′∈M∗ diff (qi,m
′) for any qi 6∈M∗. This is immediate from the property that

diff (qi,m
′) ⊆ β(m′) and hence

⋃
m′∈M∗ diff (qi,m

′) ⊆
⋃
m′∈M∗ β(m′). Since⋃

m′∈M∗ diff (qi,m
′) is nonempty, well foundedness ensures that its base set is

also nonempty, and hence also
⋃
m′∈M∗ Base(diff (qi,m

′)) 6= ∅. ut

We can now formalize our termination result for a locally strongest user.
We start with the simpler case where M∗ is a singleton set, and then extend
it to the general case.

Theorem 2 If
⋃
m′∈M∗ β(m′) is a wfo,

⋃
m′∈M∗ Base(β(m′)) is finite and the

user is locally strongest, then any synthesis session that makes strong progress
will converge in a finite number of steps.

Before going into the proof, notice that when using ⇒M as an order re-
lation, the requirement of finiteness of

⋃
m′∈M∗ Base(β(m′)) is similar to a

wqo’s finite basis requirement (Higman [16]). However, this requirement is
only applied to β(m′) for m′ ∈ M∗, not to all sets, and does not require an
upwards-closed set. Also notice that if

⋃
m′∈M∗ β(m′) was a wqo, as required

from theorem 1, this would already be true because of the finite basis property.

Proof First we show that Base(diff (qi,m
∗)) ⊆ Base(β(m∗)) for every m∗ ∈

M∗ and qi ∈ M . Let us assume, by way of contradiction, that there exists a
predicate p ∈ Base(diff (qi,m

∗)), p 6∈ Base(β(m∗)). We know that p ∈ β(m∗),
since diff (qi,m

∗) ⊆ β(m∗), so for p to not be in Base(β(m∗)) there must be
p′ ∈ Base(β(m∗)) s.t. p′ ⇒M p. p′ is not in diff (qi,m

∗), or it would also be
in Base(diff (qi,m

∗)) instead of p, which means that qi � p′. However, since
qi 6� p and p′ ⇒M p, we have reached a contradiction. This trivially implies
that

⋃
m′∈M∗ Base(diff (qi,m

′)) ⊆
⋃
m′∈M∗ Base(β(m′)), and hence finiteness

of
⋃
m′∈M∗ Base(β(m′)) ensures that

⋃
m′∈M∗ Base(diff (qi,m

′)) is finite as
well.

Next we see that since
⋃
m′∈M∗ Base(diff (qi,m

′)) is finite, then if the user
makes strong progress by selecting a predicate from

⋃
m′∈M∗ Base(diff (qi,m

′))
in each iteration, the session will always converge in at most
n ≤ |

⋃
m′∈M∗ Base(diff (qi,m

′))| iterations when one of the following occurs:

24 Hila Peleg et al.

– γ(Sn) ⊆ M∗ (as will be seen later in definition 17, Sn = B ∈ B), and the
session has converged successfully, or

– γ(Sn) = ∅, which means qn+1 = ⊥, or the session has converged unsuc-
cessfully.

The first option is a successful convergence. The second option, in which the
session fails to converge successfully, is possible for two reasons. First, because
our requirement for the user is not to select only from

⋃
m′∈M∗ Base(diff (qi,m

′)),
and other correct user actions may still lead to a contradiction. Second, through-
out the session, the user may select predicates from Base(diff (qi,m

′)) ⊆ β(m′)
of a different m′, and these predicates may contradict. The latter is no longer
a possibility if M∗ is a singleton set. ut

Example 5 Let us assume a singleton M∗ = {m∗}, a domain of functional
programs over a vocabulary V and a set P = {include(seq), exclude(seq)}
of syntactic predicates over all continuous sequences of methods seq = f1 ·
f2 · · · fn ∈ V.

We can see immediately that P itself is not a wfo: for every sequence used
by include, there is a stronger predicate which includes a subsuming sequence.
However, a specific target program m∗, and its description β(m∗), is a different
matter. While exclude sequences can longer than the length of m∗ as long as
we wish and will still appear in β(m∗), include sequences that are longer than
m∗ will rule out m∗. This means that the chain of include predicates in β(m∗)
is finite, and so β(m∗) has a well-founded ordering.

7 Successful Convergence and Backtracking

In this section we characterize the cases where a synthesis session may converge
successfully, in the sense that the user has a path that leads to successful
convergence. We then examine situations in which a synthesis session trying to
achieve a realizable target program goes awry and fails to converge successfully.
The expected user behavior in these cases is to backtrack — to remove some
of the provided specification or to cancel recent steps. We show that the point
of realization that backtracking is needed is in many cases farther along the
session than the point which necessitates backtracking. We explore the amount
of sufficient backtracking, and show that it may be of any length.

Recall that a user’s intention is realizable if M∗ 6= ∅ (see Section 4). We
observe that this is a necessary condition but in general not sufficient, and
successful convergence requires a stronger notion of realizability. To formalize
this notion, we need the following definition:

Definition 17 (Core set) We say that a set B ⊆ P is a complete specifica-
tion if ∅ 6= γ(B) ⊆M∗. We define the core set of the synthesis problem as the
set of all finite specifications, B = {B ⊆ P | ∅ 6= γ(B) ⊆M∗ ∧ |B| ∈ N}.

If there exists no B ∈ B such that ∅ 6= γ(B) ⊆ M∗, then there is no
finite underapproximation of the target space in the abstract domain defined

Programming by Predicates 25

by P. In this situation, no synthesis session will succesfully converge, even if
the specification is technically realizable. Based on this observation, we define
a stronger notion of realizability:

Definition 18 (P-realizability) We say that M∗ is P-realizable if B 6= ∅.

Indeed, P-realizability is a necessary condition for successful convergence.
For example example 3 describes the case in which the available predicates
are syntactic predicates on a single function. If all programs in M that im-
plement the user’s intention are of length 2 or more, then there may not be
an underapproximation of M∗. Likewise, when working with examples it may
take infinitely many examples to differentiate between two programs (as shown
in section 6), which means that the space described by any finite number of
examples will still contain some program outside of M∗.

Even with P-realizability, the user’s steps may lead to a point where suc-
cessful convergence is no longer possible. Next we generalize the above condi-
tion to refer to any point along the session. Furthermore, we show that the
general condition is not only necessary but also sufficient for successful conver-
gence (i.e., the user has a possible path to it). In order to provide the general
condition we first define a property of the synthesizer’s state that captures
situations where successful convergence is out of reach.

Definition 19 (Inevitable failure point) Let S be a session. The state Si
is called an inevitable failure point if ∀B ∈ B. γ(Si) ∩ γ(B) = ∅.

In particular, if γ(Si)∩M∗ = ∅, then Si is a point of inevitable failure. However,
in general, this may not be the case — valid programs may exist even at an
inevitable failure point (such programs are not contained in any B ∈ B).

We note that the condition of an inevitable failure point can be equivalently
defined as ∀B ∈ B. γ(Si) 6⊇ γ(B). Clearly, an empty intersection of γ(Si) with
(the nonempty) γ(B) implies that γ(Si) is not a superset of γ(B). For the
other direction, if there exists B such that γ(Si) ∩ γ(B) 6= ∅, then by taking
the finite set B′ = Si ∪ B we get γ(B′) = γ(Si) ∩ γ(B) ⊆ γ(Si). Moreover,
γ(B′) is nonempty and included in γ(B) ⊆M∗, hence B′ ∈ B.

Theorem 3 (Successful convergence) Let S be the prefix of length n of
a synthesis session. Then the following conditions are equivalent:

1. Sn−1 is not an inevitable failure point,
2. there exists a session S ′ that extends S and converges successfully.

Proof The proof uses the equivalent formulation of inevitable failure point.

2 ⇒ 1 If S ′ converges successfully at step m, we select its final state Sm−1
to be B. Because of the successful convergence, ∅ 6= γ(Sm−1) ⊆ M∗, and
since Sm−1 v Sn−1, then γ(Sm−1) ⊆ γ(Sn−1) (Galois connection).

1 ⇒ 2 Since Sn−1 is not an inevitable failure point, there exists some B such
that γ(Sn−1) ⊇ γ(B). Since B is finite, the user can answer with An = B.
Adding the step An leads to successful convergence: S′n = Sn−1 u An =
Sn−1 uB, so γ(S′n) = γ(Sn−1) ∩ γ(B) = γ(B).

26 Hila Peleg et al.

ut

We note that unless qn ∈ M∗ (in which case the prefix S is complete), the
extension S ′ of S constructed from the non-inevitable failure point by selecting
An = B constitutes both weak and strong progress. The reason is that for
qn 6∈ M∗, qn 6� B, which makes this step a strong progress step, and, since
some program has been eliminated, also a weak progress step.

Recall that convergence considers a worst-case synthesizer, which only re-
turns a program from M∗ when γ(Si) ⊆M∗. Theorem 3 implies that for such
a synthesizer, if a synthesis session reaches an inevitable failure point, the ses-
sion can either be infinite or end with qn = ⊥. This means that backtracking
is necessary. However, in the worst case the failure may become observable to
the user only when (if) the session terminates with qn = ⊥. A more sophisti-
cated user may realize this earlier, at the first inevitable failure point where
γ(Si) ∩M∗ = ∅. We refer to this point as the first infeasible point, and to
the prior point as the last feasible point. We note that these points are only
observable if M∗ = U∗ (or if the user is aware of M∗).

7.1 Unbounded Backtracking

We now consider the amount of steps that have to be traced back from the
point where qn = ⊥ (i.e., the session terminates with failure) or from the
point where γ(Si) ∩M∗ = ∅ (i.e., the first infeasible point in the session) to
recover a synthesizer state from which there is a suffix that leads to successful
convergence. We argue that there is no bound on the number of steps that we
need to backtrack; this is demonstrated via the following scenario.

Consider a synthesizer where M is all the programs in a language generated
by if expressions, equality (==), all list constants over integers (e.g. [], [1, 2,

3] etc.), recursive call f , the input variable i, and the library functions cons,
max, remove, sort, and reverse.

The predicate set P contains all input-output examples (ι, ω), and syntactic
exclusion of a single element, that is “exclude e” for e ∈ {if, ==, cons, · · · }.

The user wants to sort a list of integers in descending order. The following
table shows a possible interactive session with the synthesizer.

i Ai−1 qi

1
([], [])
([1, 2], [2, 1])

reverse(i)

2 exclude reverse
if (i == [1, 2]) [2, 1]
else i

3 ([1, 3], [3, 1])
if (i == [1, 2]) [2, 1]
else if (i == [1, 3]) [3, 1]
else i

...

n exclude == ⊥

Programming by Predicates 27

The first two examples lead the synthesizer to generate a simple list reversal
program. The user is not interested in this program, and disqualifies it by
excluding reverse. The synthesizer then, quite unfortunately, takes the path of
over-fitting the example set via branching using the if construct with equality
conditions. The user keeps providing examples, but is handed an ever-growing
chain of programs. After n such steps, the user chooses to block the synthesizer
from over-fitting to particular inputs by excluding the equality operator, at
which point the synthesizer can no longer find a program in M that satisfies
Sn−1, and Select returns ⊥.

Core set The core set B for this instance is the set of all finite sets of predicates
containing no contradiction and (at least)

– One of {exclude if, exclude ==}
– Two examples {(ι1, ω1), (ι2, ω2)} with ι1,2 two lists such that

∣∣〈x ∈ ι1 | x >
head(ι1)〉

∣∣ > |ι2|, and ω1,2 their corresponding descending sorts.

To see why this is the core set, first note that the exclusion of either if or ==,
rules out conditionals as well as any form of recursion (since any recursive call
will then be infinite). Including two input examples with the specified property
rules out programs that use remove to reorder the elements. 1 Moreover, when
excluding neither if nor ==, no number of examples is sufficient to make a
complete specification since switch-like over-fitting is always a valid solution.

Inevitable failure point In this example, an inevitable failure point occurs
after the second step. The reason being, that any m ∈ γ(B) must use reverse,
since any non-recursive program without it can correctly order only a fixed
number of elements from the input. {exclude reverse} disallows that, leading
to γ(B) ∩ γ(S1) = ∅.

It is possible for a correct user to reach this state, since the user expects the
program sortBy(i, neg), which is a valid program (∈ U) — but this program
is beyond the synthesizer’s search space (6∈M).

First infeasible point It should also be noted that that after the second step,
γ(S1)∩M∗ 6= ∅, since if (i==[]) [] else cons(max(i), f(remove(i, max(i))) (also
known as max-sort) is a realization of the goal. So S1 is still a feasible point, and
so are S2..(n−2) — since the examples consist of valid descending sorts, hence
max-sort � A2..(n−2). Max-sort is only discarded at An−1, by the exclusion of
==, and since reverse has already been excluded, reverse(sort(i)) or any other
composition of sort and reverse cannot be generated. Now, γ(Sn−1)∩M∗ = ∅,
making iteration n the first infeasible point. In fact, the three examples shown
are enough to make γ(Sn−1) empty, so the synthesizer returns ⊥.

The last, important thing is that we can construct the session with an
arbitrarily large n, such that the inevitable failure point (i = 2) is any number
of steps away from the last feasible point (i = n− 1), and also from the actual
failure with ⊥ (i = n). It means that any bounded backtracking is insufficient
for recovering the session in this case.

1 The number of removes has to be at least
∣∣〈x ∈ ι1 | x > head(ι1)〉

∣∣, but at most |ι2|,
which is not possible without branches.

28 Hila Peleg et al.

Theorem 4 For any given k ∈ N, there exist:

1. a session S of length k + i where Si is an inevitable failure point and
qk+i = ⊥.

2. a session S where Si is an inevitable failure point and Sk+i is the first
infeasible point.

Proof Using the construction described above, having i = 1 and either n =
k+1 (for 1) or n = k+2 (for 2). Notice that in this scenario, the nth iteration
exhibits both a first infeasible point and failure with ⊥.

8 Discussion

In this section we discuss the implication of some of the conditions posed in
definitions and theorems in the previous sections.

8.1 Progress models

Progress of the synthesizer is important not only for making sure the session
will converge, but also as a tool for the user to understand their status in the
synthesis session.

Synthesizers that do not actively define themselves as iterative have no way
of enforcing progress, of course, but if the implementation of Select is order-
dependent, then the user can tell whether their feedback has moved the session
along. This is tricky when considering weak progress—Select might stop at
the same program even though the program space as a whole has shrunk. This
is, after all, the dangerous aspect of weak progress. More useful feedback to
the user would limit this frustration and confusion.

We have already seen an example of a synthesizer that enforces very strict
strong progress in FlashFill; FlashExtract [22] and BlinkFill [34] follow the
same workflow. GIM [29] puts forth a set of predicates that allow the user to
provide positive feedback on the program, which means that even if strong
progress is to be enforced, it must be enforced at the more relaxed level de-
scribed in definition 10, allowing predicates that hold for the current program
along with those that rule it out. In an enumerating synthesizer that unifies
sub-programs based on observational equivalence, such as [26], weak progress
may be sufficient: a change in the search space could change the equivalence
classes created while enumerating, leading to a different result from Select
even if the current program was not eliminated. This could also aid a realistic
user who might not be completely certain whether a program is desirable.

When designing a new synthesizer, there are pros and cons to each of the
progress models. Strong progress, paired with a Select that will avoid returning
the same program again and again, will reduce user frustration. Weak progress
has been shown [29] to help an uncertain user reach a better program. However,
the feasibility of enforcing the progress model is itself an issue: strong progress

Programming by Predicates 29

is easy to test, as it only requires for the user answer to rule out the current
program. Weak progress, as seen in lemma 1, requires the ability to check
implication of the predicates over the current domain of programs. This, even
for simple predicates, may be difficult.

There is also the possibility of not enforcing progress at all. It can be
easily seen that termination, as proved in section 6, is not impeded if the user
provides finitely many answers that do not make progress along with those
that do. (This also applies to finitely many steps made by predicates for which
termination is not guaranteed). However, we believe forcing progress is a way
to keep the user on track.

8.2 Realizability gap

One of the problems a synthesizer can suffer from is a gap between the expec-
tations of the user and the ability of the synthesizer. Often, this is expressed
by the fact that M∗ ⊂ U∗, as in the example in section 7.1. In such a case,
a user can repeatedly backtrack and try new predicates, and still fail because
they may not even be able to pinpoint the first infeasible point of a session,
let alone the initial point of inevitable failure of their session.

Unfortunately, there is not much that can be done about this, especially
since limitations on the expressibility of M have been previously shown to be
important for both termination [24] and for heuristically arriving at the user’s
intentions faster [22]. All that remains for the synthesizer to do is to better
communicate the limitations of M .

8.3 Sharing more with the user

One of the design tenets behind [29] is to enrich the interaction model with
the user and to include more information about the program. Another way
in which the interaction can be made more informative is by including more
information about the state of the synthesizer. An indication of whether, and
what level, of progress has been made (Section 8.1) is an example of this.

Similarly, the synthesizer can communicate additional data about M and
P. Showing the user a visualization of the remaining search space may help
with problems such as the realizability gap or to identify points of failure
faster. Suggesting to the user stronger predicates they may wish to use in
their answer might help the process terminate faster.

9 Implementing the Granular Interaction Model

The Granular Inteaction Model shown in Section 3.3 was implemented in [29],
as a proof of concept of the efficacy of additional specification predicates and
the interactive model. GIM extends PBE to enable a richer interaction with
the synthesizer in both directions. The controlled user study tested both the

30 Hila Peleg et al.

new predicates and the complete extended model (including examples) against
a PBE control group.

The study first found that the two problems raised in Section 3.2 truly
occur in real synthesis sessions: PBE users repeatedly saw program elements
that uses with the exclude operation simply did away with, and wound up with
a functionally correct program that had superfluous elements that could not
be done away with using examples—though some users spent several iterations
adding more examples before realizing this.

The study concluded that syntactic feedbacks were easier for the user to
generate than examples, and that while the total time to solution was not
improved, the time to generate an answer Ai for a single iteration i was signif-
icantly reduced. This means users were working with the synthesizer in more,
but easier to create, answers. This ease is in part based on the difficulty in
generating examples shown in Section 3, but also on the selection of predicates
as will be discussed in Section 9.1. Additionally the preference of the users in
selecting predicates was tested, and users who had the choice were shown to
prefer using examples, but never only examples.

9.1 Enabling the synthesizer

The choice of predicates in P is crucial from the user’s perspective, in order
to facilitate a higher level of expressiveness that is both convenient for the
user and relevant to the domain of programs generated by the synthesizer.
However, the choice of predicates also matters to the synthesizer, especially to
maintaining and updating its representation of S, and to the implementation
of Select . We call families of predicates that have a positive impact in both
these vectors well suited to the synthesis domain: predicates that are well
suited to the representation of the synthesizer state do not only aid the user
but also help guide the search of the space. To complete this section, we show
how the predicates described in Section 3.3 are utilized by an enumerating
synthesizer for the domain of linear functional concatenations, and discuss
other synthesizer types with other representations of S and Select .

GIM predicates with an enumerating synthesizer Many synthesizers
implement Select by enumerating the program space in a bottom-up fashion [4,
10,3]. For the domain considered by GIM, bottom-up enumeration consists of
concatenating method calls to prefixes already enumerated, starting with the
program of length 0, input and restricted by types, i.e., by compilation. The
space S represented as a trie where the root is the program input and each
edge is labeled by a method name from V. Each finite-length path in the tree
represents the program. The trie is initially pruned by compilation errors (i.e.,
if f ∈ V does not exist for the return type of m, it will be pruned from the
children of the node representing m). This represents S0.

We notice that affix and exclude have a massive effect on Select : any pro-
gram that doesn’t satisfy the affix and exclude predicates in S does not need to
be extended in the enumeration, as it will never lead to a desirable program.

Programming by Predicates 31

Therefore these extensions can be discarded and the trie expansion can stop
at each such node, pruning the representation of S.

Probabilistic synthesizer A probabilistic synthesizer such as SLANG [33]
contains, at its core, a knowledge base about V in the form of a probabilistic
model about sequences of letters from it, such as an n-gram model. We can see
that the same division into operations that can be used to modify the internal
state and operations that can only be used to filter results will still apply.

For instance, consider an n-gram model, deciding the probability of the
next letter v ∈ V based on the previous n − 1 letters. For a synthesizer that
uses this model, we can define the set of predicates that will change the model
itself. The internal state of the synthesizer S is refined into a smaller state
when a probability of a path in the model is reduced to 0 (this is a way to
implement exclude), and any predicate which influences the probabilites also
influences the result of Select , which in SLANG is the result of probabilistically
selecting elements from the model.

10 Related Work

Programming by Example In PBE the interaction between user and syn-
thesizer for demonstrating the desired behavior is restricted to examples, both
in initial specifications and any refinement. FlashFill [13,32] is a PBE tool for
automating transformations on an Excel data set, and is included in Microsoft
Excel. Its implementation is based on the theory of Version-Space Algebra [21].
FlashFill is iterative by design, accepting a (strong progress) update to its spec-
ification if the resulting program is not satisfactory. The FlashMeta family of
synthesizers [34,22,32] follow this same trend.

Counterexample-guided inductive synthesis CEGIS is a synthesis frame-
work that has been formalized in [35] and [23]. It is implemented in tools such
as Sketch [37,36], which allows the user to restrict the search space via struc-
tural elements (e.g. conditions or loops) containing holes to be synthesized.
Sketching is a way to leverage a programmer’s knowledge of expected syntac-
tic elements, and when used in conjunction with restrictions on the syntax [2]
can allow very intricate synthesis. Sketch exhibits two forms of iterative pro-
cesses: the first one is an internal loop that involves a solver and a verifier,
where the solver attempts to fill the holes in the sketch and the verifier pro-
vides a stream of input-output examples until the result passes validation; and
the second, external one involves the human user and the tool, where the user
may not like the generated program or the tool rejects the sketch because it is
unsatisfiable. The internal loop is example-driven, with the verifier taking the
place of the user. The external one is non-monotonic, as the user can remove
assertions from the specification or change the syntactic class of the program
entirely. The only monotonic changes are (i) adding an assertion, (ii) removing
an assumption, and (iii) replacing a numeric hole with a constant.

32 Hila Peleg et al.

Type-directed synthesis In type-directed synthesis tools such as [15,12,30],
the specification is provided entirely by types. These tools tend to not use
an iterative model, as refining the specification is not trivial. Synquid [31]
is a type-directed synthesis tool that uses refinement types, which encode
constraints on the solution program to be imposed on the candidate space.
Refinement types have rich semantics and a definition of subtyping based on
logical implication. The user can add syntactic structure (roughly, the top of
the tree) to help the synthesizer, and can also strengthen the return type of
the program (by replacing it with a subtype) or loosen the precondition for
the types of the arguments (by replacing them with a supertype). These are all
monotonic progression steps, but the user can also change a type to any other
type or change the number of inputs to the program, which are not monotonic.
Tools that combine type-directed synthesis with examples [26,10,9] make for
a more iterative model, as adding examples is always monotonic.

Formal models of synthesis procedures Models of families of synthesiz-
ers exist for enumerative, syntax-based synthesizers [2], VSA-based synthesiz-
ers [32], and oracle-driven synthesizers via inductive learning [17]. These all de-
scribe a single-iteration interaction with the user (though [17], which describes
the counterexample-driven model as well, does describe iterative behavior with
the oracle). Two recent works describe an iterative model of interactive synthe-
sis. One [23] focuses on the synthesizer-driven model of interactive synthesis:
the synthesizer asking the user about differentiating examples, and turning
the answer back into constraints on the search space. This model is somewhat
specialized for VSA-based synthesizers and is an interactive expansion of [32].
The work of Loding et al. [24] which is intended mostly to describe the in-
ternal iteration of a CEGIS synthesizer, is also suited to a user-driven model
of interactive synthesis, as is the one presented in this paper. The model is
based in machine learning terminology, with a teacher-learner model explor-
ing a hypothesis space (i.e., a space of programs or other classifiers), and use
a sample space containing input-output examples and no additional forms of
feedback. Finally, they offer a weaker termination result, showing the existence
of a terminating learner (user) hinging on an ordering of the hypothesis space.

References

1. Albarghouthi, A., Gulwani, S., and Kincaid, Z. Recursive program synthesis. In
International Conference on Computer Aided Verification (2013), Springer, pp. 934–
950.

2. Alur, R., Bodik, R., Juniwal, G., Martin, M. M., Raghothaman, M., Seshia, S. A.,
Singh, R., Solar-Lezama, A., Torlak, E., and Udupa, A. Syntax-guided synthesis.
Dependable Software Systems Engineering 40 (2015), 1–25.

3. Alur, R., Fisman, D., Singh, R., and Solar-Lezama, A. Sygus-comp 2016: Results
and analysis. arXiv preprint arXiv:1611.07627 (2016).

4. Alur, R., Radhakrishna, A., and Udupa, A. Scaling enumerative program synthesis
via divide and conquer. In International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (2017), Springer, pp. 319–336.

Programming by Predicates 33

5. Anton, T. Xpath-wrapper induction by generalizing tree traversal patterns. In Lernen,
Wissensentdeckung und Adaptivitt (LWA) 2005, GI Workshops, Saarbrcken (2005),
pp. 126–133.

6. Cousot, P., and Cousot, R. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In POPL (1977),
pp. 238–252.

7. Drachsler-Cohen, D., Shoham, S., and Yahav, E. Synthesis with abstract exam-
ples. In Computer Aided Verification: 29th International Conference, CAV 2017, Hei-
delberg, Germany, July 24-28, 2017, Proceedings, Part I (07 2017), R. Majumdar and
V. Kunčak, Eds., pp. 254–278.

8. Ernst, M. D., Perkins, J. H., Guo, P. J., McCamant, S., Pacheco, C., Tschantz,
M. S., and Xiao, C. The daikon system for dynamic detection of likely invariants.
Science of Computer Programming 69, 1 (2007), 35–45.

9. Feng, Y., Martins, R., Wang, Y., Dillig, I., and Reps, T. Component-based syn-
thesis for complex apis. In Proceedings of the 44th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2017 (2017).

10. Feser, J. K., Chaudhuri, S., and Dillig, I. Synthesizing data structure transforma-
tions from input-output examples. In ACM SIGPLAN Notices (2015), vol. 50, ACM,
pp. 229–239.

11. Flanagan, C., and Leino, K. R. M. Houdini, an annotation assistant for esc/java.
In Proceedings of the International Symposium of Formal Methods Europe on For-
mal Methods for Increasing Software Productivity (London, UK, UK, 2001), FME ’01,
Springer-Verlag, pp. 500–517.

12. Galenson, J., Reames, P., Bodik, R., Hartmann, B., and Sen, K. Codehint: Dy-
namic and interactive synthesis of code snippets. In Proceedings of the 36th Interna-
tional Conference on Software Engineering (2014), ACM, pp. 653–663.

13. Gulwani, S. Automating string processing in spreadsheets using input-output examples.
In Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (New York, NY, USA, 2011), POPL ’11, ACM, pp. 317–330.

14. Gulwani, S. Synthesis from examples: Interaction models and algorithms. In Symbolic
and Numeric Algorithms for Scientific Computing (SYNASC), 2012 14th International
Symposium on (2012), IEEE, pp. 8–14.

15. Gvero, T., Kuncak, V., Kuraj, I., and Piskac, R. Complete completion using types
and weights. In ACM SIGPLAN Notices (2013), vol. 48, ACM, pp. 27–38.

16. Higman, G. Ordering by divisibility in abstract algebras. Proceedings of the London
Mathematical Society 3, 1 (1952), 326–336.

17. Jha, S., and Seshia, S. A. A theory of formal synthesis via inductive learning. Acta
Informatica (Feb 2017).

18. Kruskal, J. B. Well-quasi-ordering, the tree theorem, and vazsonyi’s conjecture. Trans-
actions of the American Mathematical Society 95, 2 (1960), 210–225.

19. Landauer, J., and Hirakawa, M. Visual awk: A model for text processing by demon-
stration. In vl (1995), pp. 267–274.

20. Lau, T., Wolfman, S. A., Domingos, P., and Weld, D. S. Learning repetitive text-
editing procedures with smartedit. Your Wish Is My Command: Giving Users the
Power to Instruct Their Software (2001), 209–226.

21. Lau, T., Wolfman, S. A., Domingos, P., and Weld, D. S. Programming by demon-
stration using version space algebra. Machine Learning 53, 1 (2003), 111–156.

22. Le, V., and Gulwani, S. FlashExtract: a framework for data extraction by exam-
ples. In Proceedings of the 35th Conference on Programming Language Design and
Implementation (2014), M. F. P. O’Boyle and K. Pingali, Eds., ACM, p. 55.

23. Le, V., Perelman, D., Polozov, O., Raza, M., Udupa, A., and Gulwani, S. Inter-
active program synthesis, 2017.

24. Löding, C., Madhusudan, P., and Neider, D. Abstract learning frameworks for
synthesis. In International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (2016), Springer, pp. 167–185.

25. Omari, A., Shoham, S., and Yahav, E. Cross-supervised synthesis of web-crawlers. In
Proceedings of the 38th International Conference on Software Engineering, ICSE 2016,
Austin, TX, USA, May 14-22, 2016 (2016), pp. 368–379.

34 Hila Peleg et al.

26. Osera, P.-M., and Zdancewic, S. Type-and-example-directed program synthesis. In
ACM SIGPLAN Notices (2015), vol. 50, ACM, pp. 619–630.

27. Peleg, H., Itzhaky, S., and Shoham, S. Abstraction-based interaction model for
synthesis. In Verification, Model Checking, and Abstract Interpretation (Cham, 2018),
I. Dillig and J. Palsberg, Eds., Springer International Publishing, pp. 382–405.

28. Peleg, H., Shoham, S., and Yahav, E. D3: Data-driven disjunctive abstraction. In
Verification, Model Checking, and Abstract Interpretation (2016), Springer, pp. 185–
205.

29. Peleg, H., Shoham, S., and Yahav, E. Programming not only by example. In Pro-
ceedings of the 40th International Conference on Software Engineering (2018), ACM,
pp. 1114–1124.

30. Perelman, D., Gulwani, S., Ball, T., and Grossman, D. Type-directed completion
of partial expressions. In ACM SIGPLAN Notices (2012), vol. 47, ACM, pp. 275–286.

31. Polikarpova, N., Kuraj, I., and Solar-Lezama, A. Program synthesis from poly-
morphic refinement types. In Proceedings of the 37th ACM SIGPLAN Conference on
Programming Language Design and Implementation (2016), ACM, pp. 522–538.

32. Polozov, O., and Gulwani, S. Flashmeta: A framework for inductive program syn-
thesis. ACM SIGPLAN Notices 50, 10 (2015), 107–126.

33. Raychev, V., Vechev, M., and Yahav, E. Code completion with statistical language
models. In ACM SIGPLAN Notices (2014), vol. 49, ACM, pp. 419–428.

34. Singh, R. Blinkfill: Semi-supervised programming by example for syntactic string trans-
formations.

35. Solar-Lezama, A. Program synthesis by sketching. ProQuest, 2008.
36. Solar-Lezama, A., Jones, C. G., and Bodik, R. Sketching concurrent data structures.

In ACM SIGPLAN Notices (2008), vol. 43, ACM, pp. 136–148.
37. Solar-Lezama, A., Tancau, L., Bodik, R., Seshia, S., and Saraswat, V. Combi-

natorial sketching for finite programs. ACM SIGOPS Operating Systems Review 40, 5
(2006), 404–415.

38. Udupa, A., Raghavan, A., Deshmukh, J. V., Mador-Haim, S., Martin, M. M., and
Alur, R. Transit: specifying protocols with concolic snippets. ACM SIGPLAN Notices
48, 6 (2013), 287–296.

39. Wang, C., Cheung, A., and Bodik, R. Synthesizing highly expressive sql queries
from input-output examples. In Proceedings of the 38th ACM SIGPLAN Conference
on Programming Language Design and Implementation (2017), ACM, pp. 452–466.

40. Witten, I. H., and Mo, D. Tels: Learning text editing tasks from examples. In Watch
what I do (1993), MIT Press, pp. 183–203.

41. Wu, S., Liu, J., and Fan, J. Automatic web content extraction by combination of
learning and grouping. In Proceedings of the 24th International Conference on World
Wide Web (2015), ACM, pp. 1264–1274.

