
The Wonderful Wizard of LoC
Paying attention to the man behind the curtain of lines-of-code metrics

Kalev Alpernas

Tel Aviv University

Tel Aviv, Israel

Yotam M. Y. Feldman

Tel Aviv University

Tel Aviv, Israel

Hila Peleg

University of California, San Diego

La Jolla, CA, USA

Abstract
Lines-of-code metrics (loc) are commonly reported in Pro-

gramming Languages (PL), Software Engineering (SE), and

Systems papers. This convention has several different, often

contradictory, goals, including demonstrating the ‘hardness’

of a problem, and demonstrating the ‘easiness’ of a prob-

lem. In many cases, the reporting of loc metrics is done not

with a clearly communicated intention, but instead in an

automatic, checkbox-ticking, manner.

In this paper we investigate the uses of code metrics in

PL, SE, and System papers. We consider the different goals

that reporting metrics aims to achieve, several various do-

mains wherein metrics are relevant, and various alternative

metrics and their pros and cons for the different goals and do-

mains. We argue that communicating claims about research

software is usually best achieved not by reporting quanti-

tative metrics, but by reporting the qualitative experience

of researchers, and propose guidelines for the cases when

quantitative metrics are appropriate.

We end with a case study of the one area in which lines

of code are not the default measurement—code produced by

papers’ solutions—and identify how measurements offered

are used to support an explicit claim about the algorithm.

Inspired by this positive example, we call for other cogent

measures to be developed to support other claims authors

wish to make.

CCS Concepts. • General and reference→ Metrics.
Keywords. lines of code, research papers, loc

ACM Reference Format:
Kalev Alpernas, Yotam M. Y. Feldman, and Hila Peleg. 2018. The

Wonderful Wizard of LoC: Paying attention to the man behind the

curtain of lines-of-code metrics. In Proceedings of ACM SIGPLAN
Conference on Programming Languages (PL’18). ACM, New York,

NY, USA, 11 pages.

1 Introduction
Lines of code are everywhere. In Programming Languages,

Software Engineering, and Systems (PLSES) research, soft-

ware often plays a central role as the implementation of a

paper’s ideas, and the input or output of that implementation.

In the academic papers that describe this research, there is

a tendency to, among other things, measure that software.

A sentence such as “we implemented our algorithm in 2376

PL’18, January 01–03, 2018, New York, NY, USA
2018.

lines of Go code” would not be out of place in many PLSES

papers, and neither is dividing the benchmark programs on

which an implementation is evaluated into difficulty buckets

by their sizes.

Many of these measurements are in lines-of-code (loc),
which is habitually used in such cases to measure, more or

less, the number of lines in the source code. This reporting

has many possible goals in a research paper. It may be there

to communicate to the reader that something is hard, to

express that something is easy, and, at times, it might be

there for no reason at all—authors have seen other papers

report implementation sizes, and a cargo cult belief that it is

necessary to simply report this fact has developed.

Academic papers are so short and dense that anything

that has gone in has ultimately bumped something else out.

Therefore, as readers of papers, we must ask: why are these

measurements there, and what are they contributing to our

understanding?

In this essay we examine the loc practice from this per-

spective: what purposes do lines of code aim to serve (often

implicitly)? Does loc actually fulfill its intended role in the

paper? How can authors better expound on their arguments,

in ways that are more meaningful and impactful?

A number of lines of code is not particularly useful to the

reader for the most part. The measurement itself is not well

defined except in its most naive implementation of counting

everything, including non-code lines (including blanks, com-

ments, and includes), which is not a very appealing metric.

The fact that every project is measured differently by its

own authors means no two measurements in two papers are

comparable (with order of magnitude variability, in extreme

cases), and these numbers end up being little more than noise

taking up space in the paper out of a sense of obligation.

To validate our intuition that this is as ubiquitous as it

seems, we surveyed a sample of PLSES papers that are con-

sidered good—recent Distinguished Paper Award winners

from top tier conferences. And while some papers do not

measure their code at all, of those that do, most do so in loc.
Additionally, in reporting the measurements of the types

of code where loc is more prevalent, the claims are rarely

stated explicitly.

We also surveyed existing quantitative measures of code,

to try to understand why, with many existing options, loc
is such a go-to measure. Most of these measures were devel-

oped with other goals in mind than to provide support to

PL’18, January 01–03, 2018, New York, NY, USA Kalev Alpernas, Yotam M. Y. Feldman, and Hila Peleg

the claims papers tend to make, and are, additionally, harder

to compute. This means loc becomes a comfortable default,

still not providing the best support, but at least commonly

used and easy to compute.

This essay attempts to deconstruct the various narrative

purposes underlying loc reporting in PLSES papers today,

and argues that these narratives are generally better served

by means other than loc. It is revealing, perhaps, that locs
are often reported while leaving the purpose mysteriously

unannounced; as if authors are aware that this measure does

not in fact substantiate the underlying, implicit, claim. That

claim is often some qualitative property of the solution or

benchmarks. We contend that papers should choose to do

the reverse: make the claim explicit, even without presenting

supporting data, rather than presenting not-truly-supporting

data for some ghost claim. We argue that in many cases, a

qualitative explanation, though subjective, is more mean-

ingful, informative, interesting, and compelling than loc
metrics.

Some claims and discussions can benefit from loc reports

as supporting evidence, but even then the context in which

this measurement fits is invaluable for readers looking for

remaining challenges or ways to reproduce the results. In

such cases authors must not forget to avoid the pitfalls of

bad loc reporting.

While the reporting on the size of solutions and bench-

marks was, to varying degrees, frequently problematic, we

did find one exception to our above complaints: the way

output code is reported. Section 7 is dedicated to examining

the case of measuring output code as already embodying

all our suggestions: making claims about the code explicit,

measuring in a way that supports those claims rather than

defaulting to loc, and presenting the two together.

Our vision is for research papers to be interesting, in-

structing, enlightening. A reader who is reading the im-

plementation section of a paper wants to know what was

difficult–perhaps this is precisely the problem they are hav-

ing right now!—and what they should expect to be easy.

Pseudo-empirical measures that communicate no informa-

tion serve no purpose, and in fact do the opposite, they com-

municate less information to the reader and thereby make

the work less reproducible.

This essay calls for:

1. Explicit discussions of qualitative claims about soft-

ware artifacts and benchmarks, and ways that would

increase the value of papers, both for their assessment

and their contribution to the community.

2. Conscious, rigorous reports of loc, so as not to render
them meaningless.

3. Revisiting the available quantitative measures for soft-

ware using advances in programming languages and

software engineering research.

2 Why We Measure Code
In this section we take a closer look at the role of code in

PLSES research, what about it gets reported in academic

publications, and, perhaps most importantly, why.

What code. Software has several roles in PLSES research.

A paper’s solution is often implemented in software as a

new system, tool, or algorithm. Software can also be part

of the input to the solution, in which case code is present

as benchmarks in the evaluation. Some tools also generate

code as the output of the solution, as in program repair or

synthesis, compilation to an intermediate representation, or

language to language translation. Code, in all its different

facets, is thus central to many research papers.

In describing all this code, authors often present seemingly-

empirical measures. These measurements are usually a part

of articulating their claims; sometimes they are present,

whereas the claim itself is implicit.

Claims about code. We suggest the following (inevitably

partial) list of claims about software that are supported, im-

plied, or appear in correlation to measurements of code. The

list is categorized by what is being described: the code itself,

the development process, or the problem the software solves.

– Properties of the development process
◦ The system was hard to implement (because the contri-

bution is large).

◦ The system quite easy to implement (because our solu-

tion is very concise).

◦ The system wasn’t very hard to implement, and we

could do it again in another context (a different operat-

ing system, programming language, problem domain,

etc.).

– Properties of the code (the end-product)
◦ The system has many capabilities.

◦ The system interacts with many different components,

(e.g. kernel subsystems) and the solution has to address

them all.

◦ The system interacts with few components (making

the solution “surgical”).

◦ Confidence in the system’s correctness is high.

◦ The system is extensible.

◦ The system is maintainable.

– Properties of the problem domain
◦ The problem we solve is hard: the simplest solution

takes a lot of effort.

◦ The benchmark task the solution is evaluated on is

complex to solve.

The rhetoric of code measures. In the next section, we

will discuss the ways in which code can be measured, but we

first pause to reflect on the fact that many of these claims

are qualitative. Providing an empirical measurement of the

code as “proof” for them is, at best, a surrogate measure, or a

The Wonderful Wizard of LoC PL’18, January 01–03, 2018, New York, NY, USA

measure which the authors believe is correlated well enough

with their claim that it can serve as proof
1
.

For example, a low loc count can be a surrogate measure

for “the system is maintainable”: it is a commonly held belief

that a smaller codebase will be easier for a programmer to

understand and remember all the details of, and therefore to

repair it when necessary. However, this measure does not

take into account other things believed to also correlate with

maintainability: adhering to best practices like abstraction

and encapsulation, comments, and documentation [20].

One may consider the surrogate measure to be sufficient,

or decide other empirical measures covering other angles

should be reported (for program maintainability, Zhang et al.

[20] offer a list of 39 measures in 6 categories, for instance).

However, simply addingmoremeasuresmay not be sufficient

for the reader who is seeing the numbers reported and asks,

why? Or in other words, does the reported measure improve

the understanding of the reader, advance the point of the

paper, or highlight something about the work? And if not,

what and how do we report about software to make sure

that is the case?

3 HowWe Could Measure Code
Estimating and analyzing programming effort and code com-

plexity has many useful applications for software developers

and their managers, such as assessing the risk introduced

by a software change, or planning time-frames for feature

development. The practical benefits of having meaningful es-

timates have resulted in a rich history of research in this field.

In this section, we present a short and necessarily partial

overview of the field.

Broadly, we partition the field into two categories – Code
size estimation and Programming effort estimation. Code size
estimation deals with estimating the size of the produced

code according to various metrics (several of which we de-

scribe in Section 3.1), with the underlying assumption being

that the larger the code base is, the more effort it required to

produce, and the more complex the product.

Programming effort estimation, on the other hand, focuses

on estimating the amount of work that was undertaken in

the process of creating the software. The estimation methods

(Section 3.2) range from subjective effort reporting by devel-

opers, to relying on auxiliary development statistics such as

those produced or derived from version control systems.

3.1 Code Size Estimation
Code size estimation techniques focus on measuring the

size of a software artifact. There have been many metrics

proposed over the years for measuring software size, each

with its own pros and cons. We list here a few of them.

1
As in clinical research, where surrogate outcomes are used as a less expen-

sive or invasive way to test true outcomes, but suffer from a slew of validity

problems due to the gap between what they test and the actual outcome [7].

Lines of code. The simplest metric for measuring code

size is measuring the number of lines of code in the source

files of a project. The definition of what counts as source

code is somewhat arbitrary – for example, do you count

header files in C programs or not?

Source lines of code. A more nuanced version of the loc
metric, source lines of code counts the number of source code

lines in the source files of a project. This will usually exclude

comment lines, empty lines, and syntactic constructs that do

not contain program logic, such as e.g., curly-brackets that

open or close blocks.

Given the ubiquity of slocmeasurements, it is no surprise

that a lot of practical [1] and theoretical [16, 17, 19] progress

has been made over the years, fine-tuning and generalizing

the results produced by sloc tools.

Some industry projects extend sloc to the even more

discerning “significant lines of code”, which rule out code

lines that are necessary but unimportant, such as language-

specific delimiters, auto-generated code, and other things

deemed unimportant by the project. Most of the tools to

count significant lines of code are internal to organizations,

but open-source implementations exist [2].

ASTs. loc and sloc metrics rely heavily on the source

code as it appears in the system, which makes them ex-

tremely sensitive to the choice of source language and in-

dividual programming style. A slightly more general ap-

proach is to use the size of Abstract Syntax Trees (or similar

compilation-time construct) as a unit of code size measure-

ment [3, 11].

ASTs are an abstract representation of the syntactic struc-

ture of the program. They have the dual benefit of abstracting

away the specific style choices made by developers, as well

as the syntactic differences between programming language

that share syntactic constructs. For example, a conditional

statement in Java or in Python will produce the same AST.

Number of functions. In the spirit of abstracting away

the details in the source code, an even coarser abstraction

than AST is that of functions. Assuming (perhaps perilously)

that functions in the code are used to encapsulate some small

unit of functionality, the number of functions in the source

code can stand in for the complexity of the code [10].

Counting the number of functions is even less sensitive to

the differences in syntax between languages, as it measures

a relatively high-level property of the code, but it is still

sensitive to coding style and to the way developers logically

partition their code.

McCabe’s Cyclomatic Complexity. This metric, as well

as Halstead’s metric below, derive a single numerical value

from the source code. The resulting value is well correlated

with complex code, and is ostensibly less sensitive to syntac-

tic nuances (coding style, for example), and more represen-

tative of actual complexity of code.

PL’18, January 01–03, 2018, New York, NY, USA Kalev Alpernas, Yotam M. Y. Feldman, and Hila Peleg

(a) Contribution heatmap (b) Contributions overview (c) Project contributions

Figure 1. Various ways that GitHub uses to show a developer’s history of contribution

McCabe’s cyclomatic complexity [15] is a function over

the control flow graph (CFG) of the program, correspond-

ing to the number of loops and branches in the program.

Technically, for a control flow graph with 𝑣 nodes, 𝑒 edges

and 𝑝 exit points (e.g., return statements), the cyclomatic

complexity metric is:

𝐶 = 𝑒 − 𝑣 + 2𝑝

The metric grows as edges and exit points are added to the

control flow graph—representing more complex relations

in the execution and a more complex program flow—and

shrinks as nodes are added, representing a program with a

more verbose linear execution but fewer loops.

The reliance on control flow graphs in McCabe’s metric

makes it oblivious to complexity arising from declarative

syntactical constructs (e.g., class definitions in object ori-

ented languages), and to complexity in languages where

complexity does not necessarily arise from control flow (e.g.,

purely functional languages such as Haskell).

Halstead’s Software ScienceMetrics. Halstead’s software
science metrics [9] are an attempt to measure the logical com-

plexity of the code by computing the proportion of redundant

operators and operands in the program. The intuition behind

these metrics is that algorithms are easier to understand the

more the same operands and operators repeat in the code.

For example, code that performs the same operation on the

same variable (e.g., a loop that advances a counter) is easier to

understand than code that performs multiple different oper-

ations on a set of different variables making the interactions

complex to understand.

Choice of size metric. The various different metrics de-

scribed herein allude to a variety of options, each produc-

ing a different result which further complicates the choice

of metric. However, it turns out that (perhaps somewhat

counter-intuitively) all these metrics correlate strongly with

one another [10]. Consequently, out of these approaches, the

best method will usually be the one that is easiest to under-

stand and easiest to measure, explaining, perhaps, the vast

popularity of loc as a metric. The problems of loc/sloc
measurements on which we expand in Section 5 are thus

shared by other size metrics.

3.2 Programming Effort Estimation
Programming effort estimation techniques are focused on

estimating howmuchwork is needed to produce the software

artifact in question. These techniques are most commonly

used in industry in the planning stages of projects, with the

goal of creating a workplan or a project schedule.

These techniques focus on the amount of individual ef-

fort required by a developer or group of developers, and

consequently are inherently more subjective than code size

estimation techniques. However, as we show in Section 6.1,

what might seem at first glance to be a drawback of the

approaches is actually an advantage.

(Themythical) programmer-month. The simplest way

to estimate the development effort is to, well, estimate the

amount of time it took a person to do the actual work. This

metric is usually called programmer-month or person-month,
and is essentially a self-reporting of the amount of time the

project took, multiplied by the number of people that worked

on the project. If one person worked on the project for one

year, then the project is said to have taken one person-year.

If two people worked on a project for four months then the

project is said to have taken eight person-months.

This approach has it detractors, including the popular

essay by Fred Brooks [4] arguing against the seemingly

straightforward arithmetic behind the metric. Brooks cor-

rectly points out that adding programmers to a project will

not necessarily reduce the amount of time a project takes

overall, and sometimes, counterintuitively, increase the over-

all project time. A commonly used refrain against this metric

states that while it is true that a human pregnancy typically

requires nine person-months of effort, it does not follow that

three people can produce a baby in three months.

A slightly more nuanced variant of this metric also takes

into account the experience level of the developers that

worked on a project. A month of work by a senior developer

does not equal a month of work by a junior developer. Simi-

larly, a grad student-month and a tenured professor-month

do not represent the same amount of development effort
2
.

2
We leave it to the discerning reader to decide which of these constitutes a

larger investment of effort.

The Wonderful Wizard of LoC PL’18, January 01–03, 2018, New York, NY, USA

Version control statistics. A byproduct of software de-

velopment is the version control history of a project. Develop-

ers use version control to checkpoint and backup their work,

to simplify and manage collaborative work with other devel-

opers, and to ease the process of reverting faulty changes.

A healthy development project includes registering (com-

mitting, in git lingo) all but the smallest changes with the

version control system multiple times a day while working

on a project. As a result, looking at the history of changes

in a version control system may give some insight into the

work that went into a project.

Figure 1 shows a few different ways that the repository

service GitHub uses to visually show a developers contribu-

tions, all based on the statistics collected from the version

control systems used in the projects the developers were

contributing to. Figure 1a shows a developer’s overall con-

tributions in a specific year, where each square represents a

single day’s contributions (measured by a number of com-

mits); the darker a day’s color is, the more the developer

contributed that day. Figure 1b shows a breakdown of the a

developer’s yearly contributions by kind. Figure 1c shows a

developer’s contributions to a specific project in a period of

time, measured by lines-of-code added and deleted.

Figure 1a illustrates the benefit of using the version con-

trol history over (or in addition to) the programmer-month

to report effort. While the reporting person month might

describe the project as a 7 person-month project lasting from

September to March, a review of the version-control history

shows that the work was not uniform, and there were some

periods on inactivity on the project. This does not neces-

sarily mean that the developer were idle in that period, as

in the case of a research project some of the work required

is theoretical, but it does give one a sense of the technical

programming work that was undertaken.

Number of different components modified. The final
metric we consider is one that measure the breadth of a

project by reporting on the number of unique components

(files, modules, functions, etc.) that required modification

in the process of implementing the solution. Focusing on

breadth rather than quantifying the overall size of the work

is, in some cases, a good proxy for the amount of effort

required.

Consider for example an algorithm whose implementa-

tion requires adding 100 lines of code to a file in the Linux

kernel. That project would be, in many cases, much easier

to implement than a project that requires adding one line of

code to 100 different files in the Linux kernel. Naturally, this

metric is only useful when discussing changes to complex

existing systems.

The underlying assumption behind this metric is that it

elucidates the effort inherent to the process of learning the

intricacies of an existing system and making precise modifi-

cation that do not harm the correct behaviour of the system.

3.3 Why Most of These Are Not Used
The next section will examine recent academic papers to

see in greater detail how they utilize code measures, the

majority of which are in loc and sloc. Out of this wealth
of measurement techniques, then, why does the community

default to loc? We believe the answer is twofold. Some of

these measures were developed for very different purposes—

cyclomatic complexity is intended for use in test case cre-

ation, for instance—and are therefore more obviously ill-

suited for describing code in this context. Additionally, they

are harder to compute or accurately measure. Effort esti-

mations are tainted by the fact that research projects go

down wrong paths and must right themselves, and are often

stopped and resumed, cyclomatic complexity and AST sizes

require compiling the code at least partway, and even sloc
requires downloading a tool rather than simply using wc -l,

making loc always the easy alternative.

4 HowWe Actually Measure Code
To examine the ways software is reported on in the current

scholarship, we surveyed recent papers from top-tier con-

ferences in Programming Languages, Software Engineering,

and Systems: POPL, PLDI, OOPSLA, ICSE, ASE, ASPLOS,

OSDI, and SOSP. For each conference we surveyed at least

ten distinguished paper award winners, rounding up to all

the papers in the year of the 10th paper. E.g., for ICSE we

surveyed 11 papers all from 2019, and for PLDI we surveyed

4 papers from 2019, 3 from 2018, and 4 from 2017. For OSDI

and SOSP which are biennial conferences, we surveyed ten

papers altogether.

4.1 Why Is Code Measured
Of the papers we surveyed, 44% make some sort of claim as

to code sizes. This may be to remark on the size or difficulty

of the problem domain, e.g., “programs containing millions

of lines of code”, or to explain the complexity of the solution

proposed in the paper, the benchmarks that were tested, and

code produced by the tools.

Figure 2a offers a breakdown of the papers per conference

that make reference to code metrics, and Figure 2b shows

what is measured. We divided metrics applied to the im-

plementation into one of two opposite goals: indicating its

simplicity, either indicating that the idea of the paper would

be easy to implement, or that it is an elegant solution that

does not require extraordinary development effort to work,

or indicating its difficulty, to indicate that the proposed solu-

tion is not trivial. When a large number of lines is reported

for a solution using neutral, factual language (e.g. “Our imple-

mentation consists of about 3,000 lines of code”), we consider

this a (reserved) indication of difficulty. For measurement

of benchmarks, if a measurement in loc was reported, even

if it was not the exclusive form of measurement, we count

PL’18, January 01–03, 2018, New York, NY, USA Kalev Alpernas, Yotam M. Y. Feldman, and Hila Peleg

(a) Percentage of surveyed papers that measure software in any

way, by conference.

(b) Facts about software that were reported in papers, and how

many were in loc.

Figure 2. Code measured in surveyed papers

the paper as measuring in loc; in practice only 6 papers

combined loc with another measurements for benchmarks.

4.2 How Is Code Measured
Overwhelmingly, code is measured in lines of code. Of the

papers we surveyed, 80% of the papers who employ code

metrics use loc or sloc. One paper cites a large number of

commits in open-source projects as an indication of their

practical value. When measuring code benchmarks, they are

sometimes measured differently, e.g., by the number of meth-

ods that the algorithm needs to process. Papers describing

tools whose output is code often used other metrics to de-

scribe their output, which we discuss at greater length in

Section 7.

Several papers describe the size of a code change. Two pa-

pers reported the number of lines that were changed in the

operating system. Another paper emphasized that the imple-

mentation did not necessitate any changes to the underlying

framework.

Two papers use effort estimation metrics. One paper re-

ported the time required to develop a particular feature as

“less than one day”); another reported an effort of “roughly

four person-weeks each” for a certain task. The latter also

included size estimation using loc.
We also sampled the artifacts of several papers and found

that line counts given in the paper are at times taken crudely,

including blank lines, comments, syntactic artifacts (e.g.,

lines containing only a curly brace or a semicolon), and

preprocessor directives, which in our very small sample

amounted to up to 16% of the reported length. (In other,

more extreme examples, which we will show later, this can

even be as much as a third of the reported length.)

Concrete examples. In the course of our survey we en-

countered quite a few examples of measuring that we found

objectionable. However, since we are not here to point the

finger at particular authors, we make no direct references to

them. The hypothetical-like examples we provide through-

out the paper are based on things we have seen, but are

hopefully paraphrased into anonymization. We do, however,

bring several examples of what we consider good practices

in Section 6.

5 Why the WayWe Actually Measure Code
Is Bad

Even in cases where loc truly is a good fit and can support

the authors’ argument, loc reports are inherently problem-

atic, unless they are done with care, and with a common

pitfall in mind: that loc can mean different things for differ-

ent people and codebases.

So far we have considered loc as a single metric used by

a multitude of research papers. In reality, there are many dif-

ferent ways to measure loc. In C, for example, authors may

choose differently in whether or not they count blank lines,

comments, declarations, header files, preprocessing direc-

tives, etc. We have observed several papers that count such

lines, and others that do not. As discussed in Section 3.1, the

notion of source lines of code (sloc) aims to clarify some of

this murkiness by explicitly measuring the number of logical

statements, ignoring comments and blanks. However, loc
and sloc are commonly used interchangeably [16]. Further,

sloc itself is open for interpretation: for instance, should

the line if A then B else C be counted as one line or three

statements? According to some standardization efforts, this

is up to the organization to decide and make explicit [17].

The same example demonstrates another issue with loc.
The line count depends on coding style and formatting, fac-

tors which are usually not of much interest per se when as-

sessing software (nor affect quality, simplicity, etc. in a way

that correlates with the number of lines). This can be resolved

The Wonderful Wizard of LoC PL’18, January 01–03, 2018, New York, NY, USA

by using clever definitions of what constitutes a “line”, but

we are again led back to the problem of non-standardization.

Measuring loc is thus sensitive to counting policies and

formatting. We argue that these points need to take into con-

sideration when reporting or reading loc. At first sight, this
seems not to be the case, according to research in software

measurement, which shows that different ways to count loc
are reliably correlated [10, 18]. Different formatting policies

are perfectly correlated, but cannot be compared to each

other directly [18]. This means that the exact way the code

was measured can safely be ignored when comparing two

measurements performed the same way. But when this is not

the case, they cannot be ignored:

1. A standalone measurement (“we have implemented

the system in 75476 lines of C”) can be affected by the

specific choice of what is measured, possibly leading

to a misguided impression. The loc difference might

accumulate to an order of magnitude in certain cases,

and is thus inadequate even as a rough estimate;

2. A comparison of two measurements that may have

been performed differently (“our proof takes 300 lines,

whereas the previous paper reports their proof to re-

quire 800”) might be highly biased. In our survey, we

found instances where size measurements were com-

pared to previous work, which could possibly be mea-

sured in a different way (unless the authors performed

all measurements themselves and did not report this).

When comparing two implementations, the choice of

measurement policy may not be essential, but it is

essential to ensure that both are done the same way.

Both problems can be addressed, at least in part, by al-

ways reporting the exact method of counting: this affixes

the meaning of standalone measurements, and allows the

comparison of code with a locmeasurement from a different

paper. In our survey, only one paper [5] explains how loc
was measured, and use a standard tool for this purpose.

Interestingly, this already happens in a within-paper ca-

pacity: papers commonly list the loc size of benchmarks in

a table, where their size can be compared, and implemen-

tations sizes are reported with a breakdown to individual

components, which forms a comparison between parts of

the system. Because they were all measured by the same

researchers and (presumably) the same way, these numbers

can be safely compared to each other. More accurately re-

porting the way they were measured would also make them

comparable to other projects.

6 What We Should Be Doing
So far we have outlined why the current measuring and

reporting in lines of code is not ideal. We now suggest a few

ways researchers can report their work in a way that helps

its audience.

6.1 The Argument for Quality Over Quantity
We discussed the many different ways code can be measured,

and the ways these measures are either misleading or mean-

ingless. We must first ask: why measure at all? The points

of interest that code measurements are supposed to address

are all, essentially, qualitative questions, and the size of the

code is only a surrogate measure for them.

For example, instead of reporting that a particular part

of the solution was implemented in a certain number of

loc, authors could instead discuss the trivial or tricky points
of the implementation. This would bring with it the added

advantage of communicating to anyone who may try to im-

plement the proposed solution what the difficult parts to

implement are, and what made them hard. These often will

be related to the gap between the algorithms presented in

the paper, which are simplified, and their true implemen-

tation. For instance, consider replacing the statement “the

Foo model of our tool took 1400 lines of C++ to implement”

with the far more informative “in our C++ implementation,

unlike in Algorithm 2, we must maintain bidirectional links

between Foo Bars to be used for garbage collection. Updating

these pointers on every update iteration holds a lot of the

hidden complexity of the implementation.” The same goes

for a comparison of components of the code. Instead of “the

proof of lemma 1 consists of 700 Coq lines, and lemma 2 of

400 lines”, we can report “the proof of lemma 1 was tricky

because capture-avoiding substitutions have some subtle

points here, while lemma 2 is largely rudimentary inductive

proofs about lists”.

6.2 A Selection of Claims
We gather here several suggestions of ways to report on

software and its development process. Each one is geared

toward supporting a different claim about the software, so

one must first decide why they are planning to report before

deciding what.

High development effort. If the purpose is to demon-

strate the sheer enormity of development effort that went

into a system, say so, clearly and unambiguously. As demon-

strated in the previous subsection, explicitly pointing to the

work-heavy modules or difficult areas will provide the most

value to readers. Quantitative metrics like version control

statistics or development time can be good supporting evi-

dence here, since they encompass more of the effort than just

a crude size measurement of the final product. The realities

of research projects can make effort estimation, when it is

frankly reported, enlightening but not without drawbacks,

as illustrated by the following passage from a CAV’19 pa-

per [14]: “An old version of the proof is [sic] developed on

and off for two years. The current version is re-developed,

using some ideas from the old version. The development of

the new version took about 5 person months.”

PL’18, January 01–03, 2018, New York, NY, USA Kalev Alpernas, Yotam M. Y. Feldman, and Hila Peleg

Simple and easy solution. If the purpose is to demon-

strate the conciseness of the solution, loc may be a good

metric. For instance, describing the SAT solver Tinisat [12]

(which was not part of our survey) as written in under 550

lines of C++ code, does convey an unexpected level of sim-

plicity for something as grandiose as a SAT solver. Huang

[12] goes as far as to break down each component of the

solver and record the length of its implementation, but since

loc are most useful as a relative metric, comparing to the

tens of thousands of lines of code implementing other SAT

solvers better drives the point home.

However, if ease with which the proposed solution was

implemented is the intended message, this may not be the

case. Ideally, a short development time would indicate an

easy to implement solution very directly. Feng et al. [6], for

instance, describe the ease, not of writing their solution but

of porting it to a different domain that “took us less than a

day”. However, since in research projects development time

also accounts for the trial-and-error phase of research, this

may be impractical in many cases. Researchers can state that

the implementation posed “no particular difficulties”, or even

point out what were expected, likely pitfalls that turned out

to not be a problem because of some feature of the solution.

Challenging benchmarks. If the purpose is to indicate
that the solution scales to real-world programs as input, that

is best indicated by giving it real-world programs as inputs.

Otherwise, since the portion of the algorithm that needs to

be shown to scale has a technical bottleneck, which can be

anything from the number of CFG nodes in the program to

the number of type variables in a function, it is best to explain

them from that angle; a benchmark can be gargantuan in

loc but entirely unchallenging for the algorithm, or vice

versa. For example, the benchmark for a program repair

algorithm can be a 6kloc program, but if the fault localization

algorithm described considers only the function in which a

crash occurred, it does not matter if the full program is six

thousand or six million lines of code.

For no particular reason. If the purpose is just to have

the size of the implementation reported, reconsider.

In the end, it is important to remember that while both a

qualitative discussion and a pseudo-quantitative claim are

unsubstantiated, the former can actually be informative and

enlightening. Explaining why an algorithm was tricky to

implement or why a benchmark truly challenges the tool

makes the work clearer and more easily reproducible.

6.3 loc-ing Right
In the previous subsection, we mentioned cases where loc
may be an effective measure to communicate the desired

message. However, its effectiveness as a measure is highly

eroded by the careless way in which it is often reported.

Let us consider, for example, Tinisat mentioned in the

previous subsection. The size of its implementation is re-

ported twice in two different papers [12, 13]. In the first,

Tinisat is described as “implemented in under 800 lines of

C++”, whereas in the second the implementation of the first

paper is referred to as “written in less than 550 lines of C++

(excluding comments and blank lines)”.

This kind of disparity is common, but it is rarely cor-

rected as it was for Tinisat. As previously mentioned, in

the artifacts of papers we surveyed we found that it is not

uncommon for the loc measures reported to include blank

lines, comments, precondition headers or import statements,

or, in short, to be performed by simple line-counting of a

text file. The loc measure is already prone to large variation

due to differences of formatting and coding style, further

encumbering it with non-code reduces it from a problematic

measure to downright uninformative.

Considering the disarray of counting methods, and the

problems of interpreting the resulting measure, we believe

that if loc must be reported:

1. Report size measurements only as part of comparisons
of code segments measured using the same method, or

while indicating the inconsistency when impossible

(for example when comparing different programming

languages).

2. Perform the count using de-facto standard tools for

loc, such as cloc [1].

6.4 On Finding Better Quantitative Arguments
We have argued that loc measures are ill-suited to substan-

tiate many of the interesting claims researchers wish to ar-

ticulate. Can better measures be devised? We believe that

this is not a single question, but one for each class of goals

the measurement strives for.

Can properties such as modularity, maintainability etc.,

be measured in ways that adjust for the program’s size, pro-

gramming language, and technologies used? To describe

the effort of implementing the solution, can we identify the

specific domain challenges that make such endeavors chal-

lenging and quantify them? For example, in the domain of

operating systems research, is it possible to identify a set of

common challenges—dependence on specifics of the hard-

ware, asynchronicity, availability etc.—and measure them,

as a way to demonstrate that the problem being solved is

challenging? For the opposite aim, can we evaluate a stream-

lined development experience, even if it generates quite a

lot of code or time?

Answers to such questions could provide methods to as-

cribe quantitative meaning to support qualitative claims,

making them less subjective andmore reproducible.Whether

this would be worthwhile depends, we believe, on the level

of insight such research directions could provide us about

software and software development in general.

The Wonderful Wizard of LoC PL’18, January 01–03, 2018, New York, NY, USA

7 Case Study: Evaluating Projects That
Produce Code as Output

As we have seen, when papers quantify code, the choice of

metric is usually loc, and the reasons behind that choice are
usually vague or nonexistent. One category of code quantifi-

cation stands out from the rest, though, and that is the output
quantification in projects that produce code as output. These
include, among others, tools for program synthesis, compilers,
and tools that perform code repair. In our survey, all but one

of the papers that measured code output used meaningful

metrics, with only one paper resorting to reporting lines of

code.

In this section we investigate this discrepancy, and get a

glimpse at a roadmap towards the adoption of meaningful

metrics in the rest of the PLSES community.

Output code. Software projects that produce code as an
output usually have two distinct axes that merit reporting.

The first axis they share with other software projects, and

that is the effort that the researchers exerted in creating

the software project. The second axis is an analysis of the

size of the outputs that the project or tool creates when

operating on a given input. This section focuses on how

papers report their findings on the second axis. We consider

three types of projects that produce output code—synthesis

tools, compilers, and code repair tools—though this list is by

no means exhaustive. Many other kinds of projects fall into

the category of projects that produce code as output, and we

expect that the findings described here occur in those other

cases as well.

Program synthesis tools take a program specification—

some description of the desired program behaviour—as an

input, and produce a program that matches the specification

as an output. Specifications range in robustness and rigour

from detailed formulae in temporal logic, through input-

output pairs, to descriptions in natural language. In general,

the problem of program synthesis is undecidable [8], and its

more limited formulations are simply very hard, but recent

years have seen significant advances in both theory and

application, and synthesis tools are now able to produce

more complex results. Demonstrating and communicating

these advances requires quantifying the size and complexity

of the programs produced by synthesis tools. As we explain

in example 7.1, the problem domain of program synthesis

produces natural, and useful, metrics that have been adopted

in practice by the research community.

Compilers accept as input programs in a given program-

ming language, and produce a (hopefully) equivalent pro-

gram in an assembly or intermediate language. Program

repair tools accept a program as input, locate an incorrect

behavior within it, and produce a different program that fixes

this incorrect behavior.

In all of these cases, when evaluating a project, the size

and complexity of the produced output are important both

for objectively evaluating the project, and for comparison

purposes. For example, a compiler that produces an other-

wise equivalent but smaller output program may be prefer-

able when considering a compilation target with limited

resources, such as Internet-of-Things (IoT) devices. When

reporting on compilers optimized for IoT applications, we

should expect said reporting to describe the output code size

for the representative programs, as well as comparisons to

other similar compilers.

Measuring output code. The products of tools and algo-

rithms presented in these papers are usually described in

terms of the internal representation the algorithm uses. This

may be an abstract syntax tree (AST), a control flow graph
(CFG), or a target langauge for compilation. Describing the

size of the result is most often in those terms: code generation

is often measured in the size of the AST generated (height

or number of nodes), repair is measured by the number of

edits made to the AST, and the effectiveness of compilation

and optimization are measured in the size in bytes or CFG

nodes of the resulting executable. Indeed, in our survey we

encountered only one paper that measured code output in

lines of code.

The discrepancy betweenmeasuring output code and
other measurements. Unlike the other code metrics, it is

relatively easy to see why the size of the output is being

measured, and in what ways the measurement will be mean-

ingful. Often, this will be measuring whether or not the tool

is solving the problem it has set out to solve, be it reducing

the size of a program in optimization or finding nontrivial

programs to meet a specification. Measurements of the out-

put are crucial to show that the tool works as intended to

solve its problem, and that the result is not problematic by

being too small (e.g., a trivial program) or too large (e.g., a

bloated executable).

Because of this tight-knit relationship with the operation

of the algorithm, it is also more likely that measures of the

output will be reported in some other metric than lines of

code. Even if the result is code, it must be formatted to be

measured in lines of code, but it already exists within the

tool in a representation that can be measured more precisely,

removed from formatting conventions, splitting into state-

ments, or other tricks which may make the locmeasure big-

ger/smaller (as desired), but less precise and more removed

from what success means for the algorithm.

Example 7.1 (AST Nodes as a measure of synthesis output).
Let us assume an enumerating synthesis algorithm returns

the target program foo(bar(2,"string"[1])) + 1, where

foo, bar, +, [] string literals and integer literals are all atomic

components provided to the search algorithm.

Internally, an algorithm that constructs expressions via

grammar rules on programs, explores possible programs

PL’18, January 01–03, 2018, New York, NY, USA Kalev Alpernas, Yotam M. Y. Feldman, and Hila Peleg

and comes up with this one. This means that internally this

program is represented as follows:

The researchers wish to report that their tool found a large

output program. Since larger programs are harder to syn-

thesize by virtue of being constructed from their individual

components and picked from an astronomically large space

of possible programs, this is no small feat. They therefore

want to report its size to show their algorithm is good.

The program is a single expression. However, if they were

to report their output sizes in loc, they may be tempted to

format it like so:

l e t x0 = 1 ;

l e t x1 = 2 ;

l e t x2 = " s t r i n g " ;

l e t x3 = x2 [x0] ;

l e t x4 = bar (x1 , x3) ;

l e t x5 = foo (x4) ;

l e t x6 = x5 + x0 ;

and report on a program that is 7 lines long
3
.

However, the truly impressive feat of finding this result

expression (as a single expression) is not that it can be broken

up into 7 lines, but that the AST of the expression is of

height 4, a depth where the search space is so large the

synthesis algorithm must be highly optimized to find the

result. A different target program, baz(1,2,3,4,5,6) would

also require 7 lines of code, but is only of height 1, and can

be found very easily by even the most naive of algorithms.

More generally, measuring the results of code-manipulating

and code-generating algorithms tends to have a clearly-

apparent purpose—to demonstrate that the algorithm works.
This means the measurement is far more likely to be tied to

how the algorithm was described, and to be measured in a

way that accentuates its core. Because describing the outputs

of the algorithm in the experimental results is such a key

3
In a true feat of results padding, the two instances of the integer literal 1

could be separated into two different lets thereby earning an extra line of

code.

part in showing the efficacy of a tool, one that often cannot

be omitted without raising questions, the choice of metric is

often far more deliberate—and far less likely to be loc.

8 Conclusion
The use of loc as a measure in PLSES papers is the common-

place standard for measuring the software research projects

implement, consume, and produce. This near-excessive use

is sometimes there to express that something is hard, other

times to express that it is easy, and more often than should be

the case, it expresses nothing at all. The standardization of a

metric that expresses nothing but is believed to be important

is problematic, but even more problematic when there is a

point the authors are trying to make, but out of adherence

to the standard they are trying to express it with loc.
This essay has attempted to analyze the real claims that pa-

pers are behind reported loc counts in recent PLSES papers,

and found them to be qualitative claims, what the authors

then try to support with quantitative proof, perhaps under

the assumption they are better supported when empirical.

We explained that loc is no better support for those claims

about the work than qualitative explanations, and suggested

ways those claims could be delivered, and what quantitative

claims better support them, if those exist.

Using loc measurements in papers takes away from both

readers’ understanding and the space available to the authors

to make their claims, and implicit claims may simply not

register with readers at all. We showed examples of subjec-

tive and qualitative arguments that are more informative,

compelling, and interesting than a non-indicative number.

Even though we did show cases where loc was good sup-

porting evidence to the claims authors would be making, we

also pointed out loc should not be measured carelessly, and

the way it was measured should be reported accurately so

that the result is comparable to other measurements rather

than a meaningless number. And even when a quantitative

measure is reported, authors should still state along with it

the claim it is there to support—qualitative measure should

be made explicit and stated clearly. And finally, new quanti-

tative measures that are better suited to support the kinds

of claims PLSES research makes about its software make for

interesting future PL and SE work.

Our hope is that loc reporting for the sake of loc report-

ing can stop, and that a new best practice takes hold, one

where communicating to readers useful information that

helps make the work reproducible is the norm.

Acknowledgments
We thank the anonymous referees for their insightful com-

ments. The research leading to these results has received

funding from the European Research Council under the Eu-

ropean Union’s Horizon 2020 research and innovation pro-

gramme (grant agreement No [759102-SVIS]). This research

The Wonderful Wizard of LoC PL’18, January 01–03, 2018, New York, NY, USA

was partially supported by the Israeli Science Foundation

(ISF) grant No. 1810/18, the United States-Israel Binational

Science Foundation (BSF) grant No. 2016260, the Pazy Foun-

dation grant No. 347853669, and the National Science Foun-

dation (NSF) under Grant 1911149.

References
[1] [n.d.]. CLOC: Count Lines of Code. https://github.com/AlDanial/cloc
[2] [n.d.]. jakevn/sloc: Performant significant-lines-of-code counter in

250 lines of Go. https://github.com/jakevn/sloc
[3] Bas Basten, Mark Hills, Paul Klint, Davy Landman, Ashim Shahi,

Michael J Steindorfer, and Jurgen J Vinju. 2015. M3: A general model

for code analytics in rascal. In 2015 IEEE 1st International Workshop on
Software Analytics (SWAN). IEEE, 25–28.

[4] Frederick P. Brooks, Jr. 1975. The mythical man-month: Essays on

software engineering. Reading, Mass: Addison-Weley (1975).

[5] Mikaela Cashman, Myra B. Cohen, Priya Ranjan, and Robert W. Cot-

tingham. 2018. Navigating the maze: the impact of configurability

in bioinformatics software. In Proceedings of the 33rd ACM/IEEE In-
ternational Conference on Automated Software Engineering, ASE 2018,
Montpellier, France, September 3-7, 2018. 757–767. https://doi.org/10.
1145/3238147.3240466

[6] Yu Feng, Ruben Martins, Osbert Bastani, and Isil Dillig. 2018. Program

synthesis using conflict-driven learning. ACM SIGPLAN Notices 53, 4
(2018), 420–435.

[7] B. Goldacre. 2008. Bad Science (1 ed.). Fourth Estate. 338 pages.

[8] Sumit Gulwani, Oleksandr Polozov, Rishabh Singh, et al. 2017. Program

synthesis. Foundations and Trends® in Programming Languages 4, 1-2
(2017), 1–119.

[9] Maurice Howard Halstead et al. 1977. Elements of software science.
Vol. 7. Elsevier New York.

[10] Israel Herraiz and Ahmed E Hassan. 2010. Beyond lines of code: Do

we need more complexity metrics? Making software: what really works,
and why we believe it (2010), 125–141.

[11] Yoshiki Higo, Akira Saitoh, Goro Yamada, Tatsuya Miyake, Shinji

Kusumoto, and Katsuro Inoue. 2011. A pluggable tool for measuring

software metrics from source code. In 2011 Joint Conference of the 21st
International Workshop on Software Measurement and the 6th Interna-
tional Conference on Software Process and Product Measurement. IEEE,
3–12.

[12] Jinbo Huang. 2007. A case for simple SAT solvers. In International Con-
ference on Principles and Practice of Constraint Programming. Springer,
839–846.

[13] Jinbo Huang. 2007. The Effect of Restarts on the Efficiency of Clause

Learning.. In IJCAI, Vol. 7. 2318–2323.
[14] Junyi Liu, Bohua Zhan, Shuling Wang, Shenggang Ying, Tao Liu,

Yangjia Li, Mingsheng Ying, and Naijun Zhan. 2019. Formal Veri-

fication of Quantum Algorithms Using Quantum Hoare Logic. In Com-
puter Aided Verification - 31st International Conference, CAV 2019, New
York City, NY, USA, July 15-18, 2019, Proceedings, Part II (Lecture Notes
in Computer Science), Isil Dillig and Serdar Tasiran (Eds.), Vol. 11562.

Springer, 187–207. https://doi.org/10.1007/978-3-030-25543-5_12
[15] Thomas J McCabe. 1976. A complexity measure. IEEE Transactions on

software Engineering 4 (1976), 308–320.

[16] Vu Nguyen, Sophia Deeds-Rubin, Thomas Tan, and Barry Boehm. 2007.

A SLOC Counting Standard. Technical Report. University of Southern

California: Center for Systems and Software Engineering.

[17] Robert E Park. 1992. Software size measurement: A framework for count-
ing source statements. Technical Report. Carnegie-Mellon University

Pittsburgh PA Software Engineering Institute.

[18] Jarrett Rosenberg. 1997. Some misconceptions about lines of code.

In Proceedings fourth international software metrics symposium. IEEE,

137–142.

[19] Martin Shepperd. 1995. Foundations of Software Measurement. Prentice
Hall International (UK) Ltd., GBR.

[20] Feng Zhang, Audris Mockus, Ying Zou, Foutse Khomh, and Ahmed E

Hassan. 2013. How does context affect the distribution of software

maintainability metrics?. In 2013 IEEE International Conference on Soft-
ware Maintenance. IEEE, 350–359.

https://github.com/AlDanial/cloc
https://github.com/jakevn/sloc
https://doi.org/10.1145/3238147.3240466
https://doi.org/10.1145/3238147.3240466
https://doi.org/10.1007/978-3-030-25543-5_12

	Abstract
	1 Introduction
	2 Why We Measure Code
	3 How We Could Measure Code
	3.1 Code Size Estimation
	3.2 Programming Effort Estimation
	3.3 Why Most of These Are Not Used

	4 How We Actually Measure Code
	4.1 Why Is Code Measured
	4.2 How Is Code Measured

	5 Why the Way We Actually Measure Code Is Bad
	6 What We Should Be Doing
	6.1 The Argument for Quality Over Quantity
	6.2 A Selection of Claims
	6.3 loc-ing Right
	6.4 On Finding Better Quantitative Arguments

	7 Case Study: Evaluating Projects That Produce Code as Output
	8 Conclusion
	References

