
Automatic Programming:
How Far Can Machines Go?

Hila Peleg

Technion





Laziness



Laziness Impatience



Laziness Impatience Hubris



Automatic Programming

Clean up my spreadsheet!
Right away, boss!



Program synthesis to the rescue



Program Synthesis

⇒ ⇒



What we really want

⇒ ⇒

This is what I want



What if we have automatic programming?

• Hyper-intelligent program generation for your every need



What if we have automatic programming?

• Hyper-intelligent program generation for your every need

• Self-aware, self-augmenting AI



What if we have automatic programming?

• Hyper-intelligent program generation for your every need

• Self-aware, self-augmenting AI

• The singularity



What if we have automatic programming?

• Hyper-intelligent program generation for your every need

• Self-aware, self-augmenting AI

• The singularity

• ???



What if we have automatic programming?

• Hyper-intelligent program generation for your every need

• Self-aware, self-augmenting AI

• The singularity

• ???

• THE ROBOT APOCALYPSE



The Robot Apocalypse



But it’s ok!



But it’s ok!

Understand users Build a program



But it’s ok!

Generalizing 
partial intent is 
hard

Understand users Build a program



But it’s ok!

Generalizing 
partial intent is 
hard

Solving HALT 
is hard*

Understand users Build a program





User intent is hard

Clean up my spreadsheet!
Right away, boss!



User intent is hard

Clean up my spreadsheet!
Right away, boss!

What’s “clean”?
Is this right?
What am I doing 
with my life?



Intent via examples



Intent via examples



Intent via examples



Intent via examples



Query knowledge about (some kind of) code

I want to apply foo() to
requests to my http server



Query knowledge about (some kind of) code

I want to apply foo() to
requests to my http server

val routes :  Route = ???

val bindingFuture = Http().

bindAndHandle(routes, 

"localhost", 

8080)



Commit Strip said it best…

http://www.commitstrip.com/en/2016/08/25/a-very-comprehensive-and-precise-spec/



Commit Strip said it best…

http://www.commitstrip.com/en/2016/08/25/a-very-comprehensive-and-precise-spec/



Commit Strip said it best…

http://www.commitstrip.com/en/2016/08/25/a-very-comprehensive-and-precise-spec/



Commit Strip said it best…

http://www.commitstrip.com/en/2016/08/25/a-very-comprehensive-and-precise-spec/



Building a program is also hard*

Get me a program that takes a 
program and an input and tells me if 
that program stops on that input.



Building a program is also hard*

Get me a program that takes a 
program and an input and tells me if 
that program stops on that input.

(i.e., the halting problem)



Adjusting our expectations

Here’s a grammar of 20 functions 
and 10 constants, get me a program 
that I’m certain is in this space.



Adjusting our expectations

Here’s a grammar of 20 functions 
and 10 constants, get me a program 
that I’m certain is in this space.



Adjusting our expectations

Here’s a grammar of 20 functions 
and 10 constants, get me a program 
that I’m certain is in this space.



What does this all mean?



What does this all mean?

• Generally, “find me a program that—” cannot be solved



What does this all mean?

• Generally, “find me a program that—” cannot be solved

• Still, we’re not giving up



What does this all mean?

• Generally, “find me a program that—” cannot be solved

• Still, we’re not giving up

• Realistic expectations for realistic program synthesis



Realistic expectations for realistic synthesis

We still want

• Partial specifications

• To not have to know 

everything

• A result!

But we’ll have to live without

• Checking every possible 

program

• Fully automatic solution

• Single-step solution



Realistic expectations for realistic synthesis

We still want

• Partial specifications

• To not have to know 

everything

• A result!

But we’ll have to live without

• Checking every possible 

program

• Fully automatic solution

• Single-step solution

Synthesis Engine Interaction Model



The synthesis engine

• Predicts code for intent

• Draws its understanding 
from language syntax
• and/or crowd wisdom

• and/or semantic 
specifications

• Reduce the number of 
programs seen



Reducing equivalent programs

• We’ve seen x+y, so we don’t 
want y+x



Reducing equivalent programs

• We’ve seen x+y, so we don’t 
want y+x

• But how do we know they’re the 
same?



Reducing equivalent programs

• We’ve seen x+y, so we don’t 
want y+x

• But how do we know they’re the 
same?

1. Heuristics



Reducing equivalent programs

• We’ve seen x+y, so we don’t 
want y+x

• But how do we know they’re the 
same?

1. Heuristics

2. Solvers (e.g., Z3)



Reducing equivalent programs

• We’ve seen x+y, so we don’t 
want y+x

• But how do we know they’re the 
same?

1. Heuristics

2. Solvers (e.g., Z3)

3. Observational Equivalence



Reducing equivalent programs

• We’ve seen x+y, so we don’t 
want y+x

• But how do we know they’re the 
same?

1. Heuristics

2. Solvers (e.g., Z3)

3. Observational Equivalence

Equivalence:

𝑝1 ≡ 𝑝2 i.f.f. for every possible 
input 𝑖 ever, 𝑝1 𝑖 = 𝑝2 (𝑖)



Reducing equivalent programs

• We’ve seen x+y, so we don’t 
want y+x

• But how do we know they’re the 
same?

1. Heuristics

2. Solvers (e.g., Z3)

3. Observational Equivalence

Observational equivalence:

𝑝1 ≡𝑂𝐸 𝑝2 i.f.f. for every input 𝑖 the 
user cares about, 𝑝1 𝑖 = 𝑝2 (𝑖)

Equivalence:

𝑝1 ≡ 𝑝2 i.f.f. for every possible 
input 𝑖 ever, 𝑝1 𝑖 = 𝑝2 (𝑖)



Trying a different strategy altogether

• Use knowledge bases instead of 
the language grammar

• They no longer contain every 
program (neither limited 
grammars)

• Searchable via graph algorithms 
or probability equations



The Interaction Model

• Aimed at programmers
• Specify intent

• Express yourself

• Think like a programmer



Specifying (and re-specifying) intent

Task: find the median of a list

User: examples!

1. [1,2,3]→2

2. [7,8,7,3]→7

Synthesis engine:

input[input.length/2]

User:



Specifying (and re-specifying) intent

Task: find the median of a list

User: examples!

1. [1,2,3]→2

2. [7,8,7,3]→7

Synthesis engine:

input[input.length/2]

User:

It managed to find a 
single formula, let’s 

make a counterexample 



Specifying (and re-specifying) intent

Task: find the median of a list

User: examples!

1. [1,2,3]→2

2. [7,8,7,3]→7

Synthesis engine:

input[input.length/2]

User:

It managed to find a 
single formula, let’s 

make a counterexample 

Principle #1:
Cost of communicating intent + 

consuming result << cost of 
manually performing the task



Programming Not Only by Example

input[input.length/2]

[]

input /

. 2

input length

• A programmer can talk at 
the level of the program

• Read debug info

• Reason about subtrees or 
sequences of methods

• Even rewrite the program

• But also give examples, if 
those happen to be easier



Programming Not Only by Example

input[input.length/2]

[]

input /

. 2

input length

• A programmer can talk at 
the level of the program

• Read debug info

• Reason about subtrees or 
sequences of methods

• Even rewrite the program

• But also give examples, if 
those happen to be easier

Retain

Exclude



Programming Not Only by Example

input[input.length/2]

[]

input /

. 2

input length

• A programmer can talk at 
the level of the program

• Read debug info

• Reason about subtrees or 
sequences of methods

• Even rewrite the program

• But also give examples, if 
those happen to be easier

Principle #2:
Let developers be developers

Retain

Exclude



When models “out-think” the programmer

def counts(l : List[String]) : Map[String,Int]=

l.



When models “out-think” the programmer

def counts(l : List[String]) : Map[String,Int]=

l.

groupBy(

map(

fold(



When models “out-think” the programmer

def counts(l : List[String]) : Map[String,Int]=

l.groupBy(

identity)

x => x.length)

x => x[0])



When models “out-think” the programmer

def counts(l : List[String]) : Map[String,Int]=

l.groupBy(identity).

map(x => x._1 -> x._2

x => x.length)

x => x[0])



When models “out-think” the programmer

def counts(l : List[String]) : Map[String,Int]=

l.groupBy(identity).

map(x => x._1 -> x._2.

filter(y => y.startsWith(

x._2.length

x._2[0])



When models “out-think” the programmer

def counts(l : List[String]) : Map[String,Int]=

l.groupBy(identity).

map(x => x._1 -> x._2.

filter(y => y.startsWith(



When models “out-think” the programmer

def counts(l : List[String]) : Map[String,Int]=

l.groupBy(identity).

map(x => x._1 -> x._2.

filter(y => y.startsWith(



Keep understanding what’s going on

??



Keep understanding what’s going on

??



Keep understanding what’s going on

?? Principle #3:
Results must be explainable



Programmers aren’t as good as they think

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

histogram no. lines with text most frequent word

%
 c

o
rr

ec
t 

an
sw

er

PBE Only new operations All operations



Read-Eval-Synth Loops



What if we have automatic programming?

• Hyper-intelligent program generation for your every need

• Self-aware, self-augmenting AI

• The singularity

• ???

• THE ROBOT APOCALYPSE


