
On the Importance of Common
Sense in Program Synthesis

Hila Peleg, Technion

The research leading to these results has received funding from the European Union's - Seventh Framework Programme
(FP7) under grant agreement n° 615688 – ERC- COG-PRIME.

1

Program Synthesis

Specifications

Candidate solution

2

Programming by Example

ℰ ={"abdfibfcfdebd"↦ "bd"}

𝑝 𝑠. 𝑡. ∀ 𝜄, 𝜔 ∈ ℰ. 𝑝 𝜄 = 𝜔

3

Why examples?

• The process of writing code:
1. Problem

2. Intent

3. Solution (which might have bugs,
go to #1)

• Programmers use examples:
1. To understand the problem

2. To formulate intent

3. To test the solution

9. Write a function that

concatenates two lists.

[a,b,c], [1,2,3] →

[a,b,c,1,2,3]

10. Write a function

that combines two lists

by alternatingly taking

elements, e.g.

[a,b,c], [1,2,3] →

[a,1,b,2,c,3].

https://adriann.github.io/programming_problems.html

4

ML has used this since the 70s

• Version Spaces [Mitchell ‘77]
• Generalize using a set of “concepts” that are ranked for generality

5

Version Spaces and Concept Learning

• Generalize the set of cards you’re shown

6

⊥

4♠ 5♠4♥4♦4♣ 5♥5♦5♣

4 5 ♠ ♥♦♣

red black

A card

ML has used this since the 70s

• Version Spaces [Mitchell ‘77]
• Generalize using a set of “concepts” that are ranked for generality

• ML mimicking how humans generalize from multiple
examples
• Given n examples, remember what they have in common

• If updating with example n+1, see what it has in common with the
list for n examples

• (Under a specific set of circumstances, we would call this ⊔)

7

Bias, our savior

8

An unbiased language: one that can describe
any subset of concrete examples.

Bias in ML

• A ML algorithm is biased by its language of classifiers.

• This is not a bad thing!
• Bias is what gives us generalization to examples we haven’t seen

• Desirable biases:
• Domain knowledge on samples (“samples are English letters, it

doesn’t matter what we decide for Klingon”)

• Domain knowledge on use of the result (“will flag suspicious
transactions for human review, ok to have false positives on one
parameter”)

9

Bias in synthesis

• Synthesis (often powered by ML) is biased by the search
space and the search algorithm

• Search space: possible programs
• We can’t represent what we can’t represent

• In combination with the algorithm, programs “mask” each other

• Search algorithm: will lead to overfitting
• Input: "abdfibfcfdebdfdebdihgfkjfdebd"

• Output: "bd"

• Resulting program: input.takeRight(2)

10

Common sense vs. bias

• Human common sense is (supposedly) able to give us
unbiased learning that can generalize past existing examples.

• Let’s try it out:
• 𝑓 1,1 = 1

• 𝑓 1,2 = 2

• 𝑓 3,0 = 3

Three examples is a very small
number to generalize from (if
you’re a computer)! Well done!

11

Generalize better with multiple biases?

• One way to try to be less biased is to have multiple
competing biases

• Example: let’s look for 𝑓 𝑥, 𝑦, 𝑧 : 𝑏𝑜𝑜𝑙 where
• 𝑓 2.3,5.7,4.0 = 𝑓 1.0,1.0,1.0 = 𝑓 2.0,3.0,2.5 = 𝑡𝑟𝑢𝑒

• 𝑓 2.0,2.0,2.1 = 𝑓𝑎𝑙𝑠𝑒

𝑧 = 𝑎 ⋅ 𝑥 + 𝑏 ⋅ 𝑦

𝑧 ≥ |𝑎 ⋅ 𝑥 − 𝑏 ⋅ 𝑦|

𝑧 ≤ |𝑎 ⋅ 𝑥 − 𝑏 ⋅ 𝑦|

𝑧 = 1
2 ⋅ 𝑥 +

1
2 ⋅ 𝑦

No consistent 𝑎, 𝑏

𝑧 ≤ |2
5
⋅ 𝑥 + 3

5
⋅ 𝑦|

12

Generalize better with multiple biases

• What do you do when there’s more
than one answer?

• We can rank them and pick the highest
rank

• Ranking is domain specific
• Human-directed intervention in a less-

biased system

𝑧 = 1
2
⋅ 𝑥 + 1

2
⋅ 𝑦

𝑧 ≤ |25 ⋅ 𝑥 +
3
5 ⋅ 𝑦|

⋮
?

13

What happens when we change domains?

• Will our ranking still fit?

14

JARVIS, a test synthesizer [VMCAI18]

int a =

foo();

assert(

a==8);

Group Abstract

compatible
tests

generalized
behavior

Sample

generate
values

15

Multiple biases here

What happens when we change domains?

• Will our ranking still fit?

• JARVIS ranking of numerical domains is well suited to testing
numerical libraries

• When we wanted something different (e.g. geometry)
required re-doing the ranking to fit new domain

• What could we have done differently?

16

What could we have done differently?

• We suggested the user might
occasionally help JARVIS out.

• Why not? The user can bring a
moment of common sense to the
mix:
• Choose between generalizations

• Manually generalize the result more

• While the synthesizer still does the
brunt of the work

17

But for any more we want to involve a human

JARVIS, FlashFill

A less biased search space

Search space with
domain specific bias

Injecting
common
sense into
the system

18

Test Driven Development (Nature’s PBE)

• An iterative process
• introducing a failing test

• writing the minimal amount of code to make that test pass

19

Let’s program a calculator!

@Test

public void calculatorEmptyString() {

Calculator c = new Calculator();

int res = c.evaluate("");

}

20

public class Calculator {

public int evaluate(String expr) {

return -1;

}

}

Test code:

System code:

@Test

public void calculatorEmptyString() {

Calculator c = new Calculator();

int res = c.evaluate("");

Assert.assertEquals(res, 0);

}

Failing test

21

Test code:

public class Calculator {

public int evaluate(String expr) {

return -1;

}

}

System code:

Fix the code to match

22

@Test

public void calculatorEmptyString() {

Calculator c = new Calculator();

int res = c.evaluate("");

Assert.assertEquals(res, 0);

}

public class Calculator {

public int evaluate(String expr) {

return 0;

}

}

Test code:

System code:

Test Driven Development (Nature’s PBE)

• An iterative process
• introducing a failing test

• writing the minimal amount of code to make that test pass

• This is just what we do in PBE:
1. Differentiating input-output example (failed test)

2. Find next program that matches (make all tests pass)

• So what’s the difference? The lack of common sense.

23

TDD vs. PBE

• Test 1: isPrime(5) == true
• TDD: return true;

• PBE: return true;

• Test 2: isPrime(4) == false
• TDD: return x % 2 == 1

• PBE: return x == 5

24

The less bias in our search space, the
more the result will lean toward an
overfitted result

We need bias (even though we don’t like it)

• The human can create bias for us

25

Rule out parts of the search space Bring domain knowledge to a
generic synthesizer

Rank candidates

𝑧 = 1
2 ⋅ 𝑥 +

1
2 ⋅ 𝑦

𝑧 ≤ |25 ⋅ 𝑥 +
3
5 ⋅ 𝑦|

⋮

Demo time!

26

Inversion of control

• Current program synthesis: user repeatedly queries the
synthesizer

• Inversion of control:
• the synthesizer uses the human in order to get the best result

• ask the best questions

• give the best feedback tools

27

Help the user (help us)

• Because the user isn’t perfect, either

28

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

histogram no. lines with text most frequent word

%
 c

o
rr

ec
t

an
sw

er

PBE Syntax GIM

Extreme programming, the computer aided
version

• PBE is (kind of) like TDD

• More generally, programming with a
synthesizer is like pair programming

• This is our ideal
• The machine brings the knowledge

• The human brings the common sense

29

