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Program Synthesis

Specifications

Candidate solution
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Programming by Example

ℰ ={"abdfibfcfdebd"↦ "bd"}

𝑝 𝑠. 𝑡. ∀ 𝜄, 𝜔 ∈ ℰ. 𝑝 𝜄 = 𝜔
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Why examples?

• The process of writing code:
1. Problem

2. Intent

3. Solution (which might have bugs, 
go to #1)

• Programmers use examples:
1. To understand the problem

2. To formulate intent

3. To test the solution

9. Write a function that 

concatenates two lists. 

[a,b,c], [1,2,3] → 

[a,b,c,1,2,3]

10. Write a function 

that combines two lists 

by alternatingly taking 

elements, e.g. 

[a,b,c], [1,2,3] → 

[a,1,b,2,c,3].

https://adriann.github.io/programming_problems.html
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ML has used this since the 70s

• Version Spaces [Mitchell ‘77] 
• Generalize using a set of “concepts” that are ranked for generality
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Version Spaces and Concept Learning

• Generalize the set of cards you’re shown
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ML has used this since the 70s

• Version Spaces [Mitchell ‘77]
• Generalize using a set of “concepts” that are ranked for generality

• ML mimicking how humans generalize from multiple 
examples
• Given n examples, remember what they have in common

• If updating with example n+1, see what it has in common with the 
list for n examples

• (Under a specific set of circumstances, we would call this ⊔)
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Bias, our savior
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An unbiased language: one that can describe 
any subset of concrete examples.



Bias in ML

• A ML algorithm is biased by its language of classifiers.

• This is not a bad thing!
• Bias is what gives us generalization to examples we haven’t seen

• Desirable biases:
• Domain knowledge on samples (“samples are English letters, it 

doesn’t matter what we decide for Klingon”)

• Domain knowledge on use of the result (“will flag suspicious 
transactions for human review, ok to have false positives on one 
parameter”)
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Bias in synthesis

• Synthesis (often powered by ML) is biased by the search 
space and the search algorithm

• Search space: possible programs
• We can’t represent what we can’t represent

• In combination with the algorithm, programs “mask” each other

• Search algorithm: will lead to overfitting
• Input: "abdfibfcfdebdfdebdihgfkjfdebd"

• Output: "bd"

• Resulting program: input.takeRight(2)
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Common sense vs. bias

• Human common sense is (supposedly) able to give us 
unbiased learning that can generalize past existing examples.

• Let’s try it out:
• 𝑓 1,1 = 1

• 𝑓 1,2 = 2

• 𝑓 3,0 = 3

Three examples is a very small 
number to generalize from (if 
you’re a computer)! Well done!
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Generalize better with multiple biases?

• One way to try to be less biased is to have multiple 
competing biases

• Example: let’s look for 𝑓 𝑥, 𝑦, 𝑧 : 𝑏𝑜𝑜𝑙 where
• 𝑓 2.3,5.7,4.0 = 𝑓 1.0,1.0,1.0 = 𝑓 2.0,3.0,2.5 = 𝑡𝑟𝑢𝑒

• 𝑓 2.0,2.0,2.1 = 𝑓𝑎𝑙𝑠𝑒

𝑧 = 𝑎 ⋅ 𝑥 + 𝑏 ⋅ 𝑦

𝑧 ≥ |𝑎 ⋅ 𝑥 − 𝑏 ⋅ 𝑦|

𝑧 ≤ |𝑎 ⋅ 𝑥 − 𝑏 ⋅ 𝑦|

𝑧 = 1
2 ⋅ 𝑥 +

1
2 ⋅ 𝑦

No consistent 𝑎, 𝑏

𝑧 ≤ |2
5
⋅ 𝑥 + 3

5
⋅ 𝑦|
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Generalize better with multiple biases

• What do you do when there’s more 
than one answer?

• We can rank them and pick the highest 
rank

• Ranking is domain specific
• Human-directed intervention in a less-

biased system

𝑧 = 1
2
⋅ 𝑥 + 1

2
⋅ 𝑦

𝑧 ≤ |25 ⋅ 𝑥 +
3
5 ⋅ 𝑦|

⋮
?
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What happens when we change domains?

• Will our ranking still fit?
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JARVIS, a test synthesizer [VMCAI18]

int a = 

foo();

assert(

a==8);

Group Abstract

compatible 
tests

generalized 
behavior

Sample

generate 
values

15

Multiple biases here



What happens when we change domains?

• Will our ranking still fit?

• JARVIS ranking of numerical domains is well suited to testing 
numerical libraries

• When we wanted something different (e.g. geometry) 
required re-doing the ranking to fit new domain

• What could we have done differently?
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What could we have done differently?

• We suggested the user might 
occasionally help JARVIS out.

• Why not? The user can bring a 
moment of common sense to the 
mix:
• Choose between generalizations

• Manually generalize the result more

• While the synthesizer still does the 
brunt of the work
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But for any more we want to involve a human

JARVIS, FlashFill

A less biased search space

Search space with
domain specific bias

Injecting
common
sense into
the system
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Test Driven Development (Nature’s PBE)

• An iterative process 
• introducing a failing test 

• writing the minimal amount of code to make that test pass
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Let’s program a calculator!

@Test

public void calculatorEmptyString() {

Calculator c = new Calculator();

int res = c.evaluate("");

}
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public class Calculator {

public int evaluate(String expr) {

return -1;

}

}

Test code:

System code:



@Test

public void calculatorEmptyString() {

Calculator c = new Calculator();

int res = c.evaluate("");

Assert.assertEquals(res, 0);

}

Failing test
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Test code:

public class Calculator {

public int evaluate(String expr) {

return -1;

}

}

System code:



Fix the code to match
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@Test

public void calculatorEmptyString() {

Calculator c = new Calculator();

int res = c.evaluate("");

Assert.assertEquals(res, 0);

}

public class Calculator {

public int evaluate(String expr) {

return 0;

}

}

Test code:

System code:



Test Driven Development (Nature’s PBE)

• An iterative process 
• introducing a failing test 

• writing the minimal amount of code to make that test pass

• This is just what we do in PBE:
1. Differentiating input-output example (failed test)

2. Find next program that matches (make all tests pass)

• So what’s the difference? The lack of common sense.
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TDD vs. PBE

• Test 1: isPrime(5) == true
• TDD: return true;

• PBE: return true;

• Test 2: isPrime(4) == false
• TDD: return x % 2 == 1

• PBE: return x == 5
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The less bias in our search space, the 
more the result will lean toward an 
overfitted result



We need bias (even though we don’t like it)

• The human can create bias for us

25

Rule out parts of the search space Bring domain knowledge to a 
generic synthesizer

Rank candidates

𝑧 = 1
2 ⋅ 𝑥 +

1
2 ⋅ 𝑦

𝑧 ≤ |25 ⋅ 𝑥 +
3
5 ⋅ 𝑦|

⋮



Demo time!
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Inversion of control

• Current program synthesis: user repeatedly queries the 
synthesizer

• Inversion of control:
• the synthesizer uses the human in order to get the best result 

• ask the best questions

• give the best feedback tools
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Help the user (help us)

• Because the user isn’t perfect, either
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Extreme programming, the computer aided 
version

• PBE is (kind of) like TDD

• More generally, programming with a 
synthesizer is like pair programming

• This is our ideal
• The machine brings the knowledge

• The human brings the common sense
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