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Abstract
Recent years have seen great progress in automated synthesis tech-
niques that can automatically generate code based on some intent
expressed by the programmer, but communicating this intent remains
a major challenge. When the expressed intent is coarse-grained (for
example, restriction on the expected type of an expression), the syn-
thesizer often produces a long list of results for the programmer to
choose from, shifting the heavy-lifting to the user. An alternative
approach, successfully used in end-user synthesis, is programming
by example (PBE), where the user leverages examples to interac-
tively and iteratively refine the intent. However, using only examples
is not expressive enough for programmers, who can observe the
generated program and refine the intent by directly relating to parts
of the generated program.

We present a novel approach to interacting with a synthesizer
using a granular interaction model. Our approach employs a rich
interaction model where (i) the synthesizer decorates a candidate
program with debug information that assists in understanding the
program and identifying good or bad parts, and (ii) the user is al-
lowed to provide feedback not only on the expected output of a
program but also on the program itself. After identifying a program
as (partially) correct or incorrect, the user can also explicitly indicate
the good or bad parts, to allow the synthesizer to accept or discard
parts of the program instead of discarding the program as a whole.

We show the value of our approach in a controlled user study. Our
study shows that participants have a strong preference for granular
feedback instead of examples and can provide granular feedback
much faster.

1 Introduction
In a development ecosystem where programmers often carry out
tasks involving unfamiliar APIs and complex data transformations,
program synthesis is both a tool to shorten development times and
an aid to small API programming tasks.

Synthesis tools for end-users are available for many purposes,
from creating formulae in Microsoft Excel [13] to formulating SQL
queries [39]. Tools for expert users who can encode full specifica-
tions have also matured enough to be practical [23, 32, 36].
Expressing Intent Despite significant progress in synthesis, express-
ing the user’s intent remains a major challenge. Expert users can
write full specifications and express their intent fully [7, 9, 16–
18, 23, 26, 36–38], but end-users and programmers trying to solve
small tasks often use partial specifications. Partial specifications are
available in different forms, depending on the synthesizer: source
and target types, input-output pairs, tests, and logical specifications.

Coarse-grained models such as type-driven synthesis present the
user with all possible results that satisfy the coarse-grained crite-
ria (e.g., [12, 15]). This leads to a challenging task: the user must
compare a large number of similar programs to select a solution.

Expressing Intent with Examples A very useful alternative for end-
users is to use examples to express intent. Programming by Example
(PBE) is a form of program synthesis where the desired behavior is
generalized from specific instances of behavior, most often input-
output example pairs. This allows an iterative process where, if
the synthesized program is not acceptable, additional examples are
provided until the target program is reached. This technique is often
used either on its own in synthesizers such as [5, 13, 20–22, 24, 39–
41] or as a way to refine the results of type-driven synthesis [11, 25].
Insufficiency of Examples for Programmers PBE is geared towards
end-users, but is also useful for more advanced users when the be-
havior is more difficult to describe than its effect. However, in this
interaction model, a user can only do one of two things: accept the
program after inspection, or reject it with a differentiating example
which will rule it out in the next iteration of synthesis. But some
synthesized programs are not all bad: parts of them might be over-
fitted to the examples, while other parts will be on the right track.
Allowing only a full accept or full reject ignores the ability of a
programmer to read and understand the program, and to express a
more directed, granular feedback, deeming parts of it as desirable
or undesirable rather than the program as a whole.

In fact, we hypothesize that, in some cases, it is easier for a
programmer to explicitly indicate what is good or bad in a candidate
program than to try to express this information implicitly through
input-output examples. Moreover, we prove that it is sometimes
impossible to express such information through examples.
Programming Not Only by Example Motivated by the insufficiency
of examples, we present a new, granular interaction model that
allows a programmer to interact with the synthesizer not only by
example but also by providing feedback on parts of the synthesized
program. Our interaction model is granular in both directions: from
the programmer to the synthesizer and back:
Synthesizer→ Programmer: A candidate program is presented to-
gether with debug information, showing execution values at different
program points. This helps the programmer understand whether the
candidate program behaves as expected at intermediate states, in-
stead of relying only on its final output.
Programmer→ Synthesizer: A programmer can provide: (i) input-
output examples (as in PBE), and (ii) granular feedback on the
candidate program by explicitly accepting/rejecting parts of its code.

We tested the granular interaction model by a controlled user-
study with 32 developers from both academia and industry. To con-
duct this study, we developed a synthesizer that interacts with the
user in three different ways: holistic (PBE), granular, or both. Our
synthesizer also measures interaction times, and records the user-
interaction for later analysis.

Our implementation synthesizes functional programs in Scala,
a popular functional and object-oriented programming language,
used in many big-data processing frameworks (e.g., Spark, Akka).
Functional compositions are considered “the Scala way” to approach
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coding tasks, and so we aim to synthesize them. The same approach
also applies to any language that uses functional compositions, which
are becoming a standard in modern languages. Notably, such con-
structs are supported by Java 8 onwards and JavaScript 6 onwards
(in JS5 in the popular library lodash).
Advantages of granular interaction The user study strongly sup-
ports the hypothesis that it is beneficial to let programmers communi-
cate their understanding of the program explicitly to the synthesizer
(by marking parts of it as desirable or undesirable) rather than im-
plicitly (through examples). Several participants in our user study,
faced with the inability to rule out an undesired operation in the
program using only examples, expressed extreme frustration. We
indeed show that this is more common than one would imagine, due
to the introduction of redundant or superfluous operations by the
synthesizer. As a result, an undesirable operation may be part of
several candidate programs along the process, but the holistic PBE
model does not allow ruling it out.

We further show that our granular interaction model (GIM) is
easier to use, as supported by: (i) a strong preference of participants
for granular feedback over examples, and (ii) a significantly shorter
iteration time when using granular feedback. It is important to note
that granular feedback does not completely replace examples. Par-
ticipants who were restricted to granular feedback were sometimes
forced to use a larger number of iterations, and were more prone to
error when accepting the program. We therefore conclude that future
synthesizers should integrate both interaction models.
Main Contributions The contributions of this paper are:

• A synthesis framework with a granular interaction model
(GIM) that allows the programmer to approve or reject spe-
cific parts of the code of the candidate program rather than
just respond to it as a whole and allows a synthesizer to
present candidate programs with debug information.
• A theoretical result showing that examples are sometimes

insufficient for reaching the desired program. We further show
that real PBE sessions exhibit this problem.
• A controlled user study showing that programmers strongly

prefer granular feedback instead of examples and can provide
granular feedback much faster.

Outline In Section 4 we show why examples are not only incon-
venient but insufficient to communicate the intent of the programmer.
To allow more expressive power, we introduce three additional gran-
ular operations in Section 5 in addition to examples. In Section 5.2,
we also introduce debug information for every example provided
by the user. Section 6 details our experiments on the number of
iterations necessary to solve a set of benchmarks with different in-
teraction models. We also present the result of a controlled user
study of 32 programmers from academia and industry that shows the
benefits of our approach.

2 Overview
In this section we provide an overview of our Granular Interaction
Model (GIM) for synthesis using a simple example. We start by
showing the interaction model of Programming by Example (PBE)
and its shortcomings, and then describe how GIM overcomes these
shortcomings by using a richer interaction model.

Task: find the most frequent bigram in a string
Initial example (σ0) "abdfibfcfdebdfdebdihgfkjfdebd"7→"bd"

Question q1 1 input

2 .takeRight(2)

Problem: takeRight will just take the right of a given string
Idea: the frequent bigram needs to be placed in the middle
Answer σ1 "cababc" 7→"ab"

Question
q2

1 input

2 .drop(1)

3 .take(2)

Problem: this program crops a given input at a constant position
Idea: vary the position of the frequent bigram between examples
Answer σ2 "bcaaab" 7→"aa"

Question
q3

1 input

2 .zip(input.tail)

3 .drop(1)

4 .map(p => p._1.toString + p._2)

5 .min

Problem: in all examples the output is the lexicographical minimum of all
bigrams in the string (e.g., "aa" < "bc", "aa" < ca", "aa" < "ab")
Idea: have a frequent bigram that is large in lexicographic order
Answer σ3 "xyzzzy" 7→"zz"

Table 1: The difficulty of finding a differentiating example.

Motivating example Consider the task of writing a program
that finds the most frequent character-bigram in a string. Assume
that the program is constructed by combining operations from a
predefined set we refer to as the vocabularyV . For now, assume that
the vocabulary contains standard operations on strings, characters,
and lists. In addition, assume that an initial partial specification is
provided in the form of an input-output example:

σ0 = "abdfibfcfdebdfdebdihgfkjfdebd" 7→ "bd".

In this example, the bigram “bd” is the most frequent (appears 4
times), and is thus the expected output of the synthesized program.

2.1 Interaction with a classic PBE synthesizer

Table 1 shows the interaction of a programmer with a PBE syn-
thesizer to complete our task. The synthesizer poses a question to
the programmer: a candidate program that is consistent with all
examples. The programmer provides an answer in the form of an
accept, or additional input-output examples to refine the result.

Based on the initial example, the synthesizer offers the candidate
program q1, which consists of a single method from the vocabulary –
takeRight(2), which returns the 2 rightmost characters – applied
to the input. The programmer then responds by providing the ex-
ample σ1, which is inconsistent with the candidate program, and
therefore differentiates it from the target program.

At this point, the synthesizer offers a new candidate program q2,
which is consistent with both σ0 and σ1.

The interaction proceeds in a similar manner. Each additional
example may reduce the number of candidate programs (as they are
required to satisfy all examples). If the user chooses the examples
carefully, the process terminates after a total of 4 examples.

Finding differentiating examples may be hard Consider the
candidate program q3. To make progress, the user has to provide an
example that differentiates q3 from the behavior of the desired pro-
gram. To find a differentiating example, the user must (i) understand
the program q3 and why it is wrong, and (ii) provide input-output
examples that overrule q3, and preferably also similar programs.
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Task: find the most frequent bigram in a string
Initial

"abdfibfcfdebdfdebdihgfkjfdebd" 7→"bd"
specifications

Question
q1

1 input//"abdfibfcfdebdfdebdihgfkjfdebd"

2 .takeRight(2)//bd

Problem: takeRight will just take the right of a given string
Idea: takeRight will never be useful since we always want to consider
every element. Remove takeRight from the result program.
Answer Remove(takeRight(2))

Question
q2

1 input //"abdfibfcfdebdfdebdihgfkjfdebd"

2 .drop(1)//"bdfibfcfdebdfdebdihgfkjfdebd"

3 .take(2) //"bd"

Problem: this program crops a given input at a constant position
Idea: we don’t want to crop anything out, so these functions have no place
in the result program.
Answer Remove(drop(1).take(2))

Question
q3

1 input //"abdfibfcfdebdfdebdihgfkjfdebd"

2 .zip(input.tail) //List((a,b),(b,d),(d,f),...

3 .take(2) //List((a,b),(b,d))

4 .map(p => p._1.toString + p._2) //List("ab","bd")

5 .max //"bd"

Problem: while the beginning of this program is actually good (dividing
the program into bigrams) and so is the mapping of a 2-tuple to a string,
take(2) truncates the bigram list.
Idea: preserve what is good in the program and remove take(2) on its
own and not just as part of a sequence.

Answer
Affix(zip(input.tail))
Remove(take(2))
Retain(map(p => p._1.toString + p._2))

Table 2: Providing granular, syntactic feedback.

By examining the code ofq3, it is easy to see that min is a problem:
calculating a minimum should not be part of finding a most frequent
bigram. Even after understanding the problem, the programmer must
still find a differentiating example that rules out q3. Because the min
in q3 takes the (lexicographical) minimum from a list of the bigrams
in the input, the programmer comes up with an example where the
desired bigram is the largest one, as in σ3.

In this interaction, the programmer had to express the explicit
knowledge (“do not use min”) implicitly through examples. Coming
up with examples that avoid min requires deep understanding of the
program, which is then only leveraged implicitly (through examples).
Even then, there is no guarantee min will not recur: as we will show
in Section 4, it cannot be removed completely in this model. In
this case, since the programmer already knows that programs using
min should be avoided, this information is best communicated this
information explicitly to the synthesizer.

2.2 Interaction through a granular interaction model

GIM improves PBE by employing a richer, granular interaction
model. On the one hand, the synthesizer supplements the candidate
programs by debug information that assists the programmer in un-
derstanding the programs and identifying their good and bad parts.
On the other hand, the user is not restricted to providing semantic
input-output examples, but can also mark parts of the program code
itself as parts that must or must not appear in any future candidate
program. This allows the user to provide explicit, syntactic, feedback
on the program code, which is more expressive, and in some cases
allows the synthesizer to more aggressively prune the search space.

The GIM interaction for the same task of finding the most frequent
bigram is demonstrated in Table 2. Question 1 is as before: the syn-
thesizer produces the candidate program input.takeRight(2).
In contrast to classic PBE, the granular interaction model provides
additional debug information to the user, showing intermediate val-
ues of the program on the examples. This is shown as comments
next to the lines of the synthesized program. For q1, this is just the
input and output values of the initial example. In the next steps this
information will be far more valuable.

Given q1, the programmer responds by providing granular feed-
back. Using GIM it is possible to narrow the space of programs
using syntactic operations. Presented with input.takeRight(2),
the user can exclude a sequence of operations from the vocabu-
lary, in this instance takeRight(2), ruling out any program where
takeRight(2) appears. This also significantly reduces the space
of candidate programs considered by the synthesizer.

The synthesizer responds with q2. Note that in such cases the
debug information assists the programmer in understanding the
program, determining whether it is correct, or, as in this case, iden-
tifying why it is incorrect. To rule out q2, the user rules out the
sequence drop(1).take(2), as the debug information shows the
effect (“take the second and third character of the string”), and the
user deems it undesirable at any point in the computation to truncate
the string, as all characters should be considered.

The synthesizer responds with q3. This candidate program con-
tains something the programmer would like to preserve: the debug
information shows that the prefix input.zip(input.tail) cre-
ates all bigrams in the string. The user can mark this prefix to affix,
or to make sure all candidate programs displayed from now on begin
with this prefix. This removes all programs that start with any other
function inV , effectively slicing the size of the search space by |V |.
Another option (multiple operations stemming from the same pro-
gram are not only allowed but encouraged) is to exclude take(2)
since the resulting truncation of the list is undesirable.

Eventually, the synthesizer produces the following program:

1 input//"abdfibfcfdebdfdebdihgfkjfdebd"

2 .zip(input.tail)//List((a,b),(b,d),(d,f),(f,i),(i,b),(b,f),...)

3 .map(p => p._1.toString + p._2)//List("ab","bd","df","fi","ib",...)

4 .groupBy(x => x)//Map("bf"->List("bf"),"ib"->List("ib"),...)

5 .map(kv => kv._1 -> kv._2.length)//Map("bf"->1,"ib"->1,"gf"->1,...)

6 .maxBy(_._2)//("bd",4)

7 ._1//"bd"

which does not discard any bigram, counts the number of occur-
rences, and retrieves the maximum. This program is accepted.

Below we summarize the key aspects of GIM, as demonstrated
by the above example.

Key Aspects

• Granular feedback: the programmer can provide feedback
(keep/discard) on parts of the program, in addition to input-
output examples. The ability to give explicit feedback on
the code itself provides an alternative (and complementary)
way to interact with the system without crafting potentially
complicated differentiating examples.
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• Assisting the User with Debug Information: the synthesizer
provides debug information on intermediate states of the pro-
gram in order to assist the user. Candidate programs are sup-
plemented with debug information that helps the programmer
understand the good and bad parts of a candidate program.
• Insufficiency of Examples: examples are both inconvenient

and insufficient to communicate a programmer’s intent. Other
operations are needed to allow a programmer to filter pro-
grams not only according to semantic equivalence but also
according to additional criteria such as readability, best prac-
tices and performance.

3 Background
In this work we address synthesis of functional programs. Below we
provide the necessary background.
Notation of functions We interchangeably use the mathematical
notation h(д( f (x ))) for the functional composition called on object
x and the Scala notation x . f .д.h (in Scala, a function application
with no arguments does not require parentheses).

For a functional programm, we denote ⟦m⟧ as the function that
the program computes. Formally, ⟦m⟧ : D → D ∪ {⊥} maps every
element i in the domain, D, either to the element in D that the
program outputs on i, or to an error (compilation or runtime) ⊥ < D.
Vocabulary and the candidate program space The candidate pro-
gram space consists of programs of the form input.f1.. . . .fn−1.fn
(in Scala notation), or fn ( fn−1 (. . . f1 (input ) . . . )) (in mathematical
notation), where each fi is a method from a predefined vocabulary
V . Object methods that accept arguments are handled by partially
applying them with predefined arguments, such as constants, lambda
functions or variables in the context, leaving only the self reference
as an argument. Generally, the candidate program space includes
every program inV∗, but we notice that for some programs there
are compilation errors as not all f ∈ V are applicable to all objects.
Programming by Example (PBE) Programming by Example is a
sub-class of program synthesis where all communication with the
synthesizer is via examples. The classic PBE problem is defined as a
pair (E,L) of initial examples E and target language L, where each
example in E is a pair (i,o) of input i ∈ D and expected output o ∈ D.
The result of the PBE problem (E,L) is a program m, which is a
valid program in L that satisfies every example in E, i.e., ⟦m⟧(i ) = o
for every (i,o) ∈ E. Since there might be more than one program
m in the language L that matches all specifications, the iterative
PBE problem was introduced. In the iterative model, each candidate
program mi is presented to the user, who may then accept mi and
terminate the run, or answer the synthesizer with additional examples
Ei that direct it in continuing the search.

4 The Insufficiency of Examples
In this section, we show the importance of extending the user’s
answer model beyond input-output examples. We examine more
formally the scenario described in Section 2.1, where the user has
seen an undesirable program component and would like to exclude
it specifically. We will show that this is not always possible, i.e., that
examples are insufficient to communicate the user’s intent.

As seen in Section 2.1, the user wishes to rule out the function
min, but simply providing an example to rule out the current program

might not be enough to remove min from all candidates to ensure it
never recurs. We now formally prove it is impossible to completely
remove methods like min from the search space using examples.

We recall the definition of equivalence between programs. Pro-
grams m1 and m2 are equivalent if ⟦m1⟧ = ⟦m2⟧. We use this to
prove the following claim:

CLAIM 1. Let v ∈ V be a letter such that there exists a program
m that is equivalent to m∗ and contains v. Then examples alone
cannot rule out the letter v ∈ V from candidate programs.

The proof follows since examples can only distinguish between
programs that compute different functions.

Next we show that Claim 1 is applicable to methods that are
prevalent in programming languages and extremely useful in some
contexts, and therefore are likely to find their way into the vocabular-
ies used in synthesis. We consider two classes of methods: invertible
methods and nullipotent methods.
Invertible methods are methods with an inverse that, when applied
in sequence lead back to the initial input. For instance, reverse on
a list is invertible and its own inverse, as in.reverse.reverse
will be identical to in. An invertible method can always be added to
the target program along with its inverse, resulting in an equivalent
program. Hence, it will never be ruled out by examples.
Nullipotent methods are methods that, when applied, lead to the
same result as not being applied. While this is often context-sensitive,
e.g. calling toList on a list or mkString on a string, there are
calls that will always be nullipotent, such as takeWhile(true).
Because some methods are nullipotent only in a certain context, they
may be in a synthesizer’s vocabulary, and end up in the program
space in contexts where they are nullipotent. It is easy to construct
a program that contains nullipotent methods and is equivalent to
the target program. Hence, similarly to invertible methods, these
methods cannot be eliminated by examples.

Furthermore, since many existing PBE synthesizers prune very
aggressively based on observational equivalence, or equivalence
based only on the given examples, programs that do not include the
undesired component may not be available anymore as they have
been removed from the space.

These properties leave us with the need to define a more expres-
sive, granular model.

The practical implications of claim 1 are discussed in Section 6.4,
which examines the existence of method sequences deemed undesir-
able by users in candidate programs. The data as well as opinions
collected from users show that the inability to remove an undesirable
letter from the alphabet has real-world consequences, which add to
the user’s frustration with the synthesizer (see Table 6).

5 The Granular Interaction Model
In this section, we describe the Granular Interaction Model (GIM),
which extends the PBE model with additional predicates. Namely,
predicates in GIM include examples, but also additional predicates.
The key idea is to add a broader form of feedback from the user
to the synthesizer than has been available in PBE. We begin by
describing the operations and the type of feedback that each such
predicate allows the user to provide the synthesizer with, and discuss
the observed uses of each.
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5.1 Granular predicates

In the setting of functional compositions, we present GIM with three
syntactic predicates. We refer to these predicates as granular since
they impose constraints on parts of the program rather than on its
full behavior, as captured by the function it computes or its input
and output types. We will also discuss other, possible predicates.

Given a candidate program m = fn ( fn−1 (. . . input . . . )), we in-
troduce the following predicates, to be tested against other programs
m′ = f ′m ( f ′m−1 (. . . input . . . )):

(1) remove( fi , . . . , fj ) where i ≤ j: will hold only for programs
m′ where ¬∃k . f ′k = fi ∧ · · · ∧ f ′k+i−j = fj

(2) retain( fi , . . . , fj ) where i ≤ j: will hold only for programs
m′ where ∃k . f ′k = fi ∧ · · · ∧ f ′k+i−j = fj

(3) affix( f0, . . . , fi ): will hold only for programsm′ where ∀j ≤
i . fj = f ′j .

The remove operation rules out a sequence of one or more method
calls as undesirable. For the example in Section 2, to rule out min
the user would simply add the predicate remove(min). However,
should the user rule out a sequence longer than a single method,
this would apply to the sequence as a whole: using the predicate
remove(reverse, reverse) does not exclude the reverse method,
only two consecutive invocations of it that cancel out.

The retain operation defines a sequence that must appear in the
target program. It is similarly defined for sequences: when applied
to a single method, it forces the method, and when applied to a
sequence it forces the sequence, in-order. It can be viewed as creating
a procedure and then deeming it as desirable.

However, since retain is not dependent on the location of the
procedure in the program, we add an additional predicate for not
only setting a procedure but forcing its location to the beginning of
the program. The affix predicate will essentially narrow the search
space to sub-programs that come after the desired prefix.
Additional predicates As these three operations are highly expres-
sive and easy to understand, we have focused our experiments on
them, but they are by no means the only possible predicates. Many
other granular operations exist. For instance, the user can reason
about intermediate states of the program by demanding or exclud-
ing certain intermediate states for a given input. A user can also
require an error, or an error of a certain kind, for a given input. Sec-
tion 5.4 will expand on the reasons to select certain expansions to
the interaction model over others.

5.2 Adding a debugging view of the code

GIM assumes an interaction with users who are comfortable reading
code. This means not only that more can be expected from them, but
that they can be assisted in ways currently not offered by synthesiz-
ers. Just as the interaction from the user to the synthesizer can be
granulated, so can the interaction from the synthesizer to the user.

PBE tools like FlashFill only show the user the output of running
the program on an input. Other tools that do show code show the
program while guaranteeing that it satisfies all examples in E. In a
functional concatenation, it is possible to show the user the result
of each subprogram, on each e ∈ E. This means that even for some
unfamiliar f ∈ V , the user can still gauge its effect and determine
by example whether that effect is desired.

Figure 1: Program with debug information, a sequence selected for removal

EXAMPLE 1. Let us consider the case where input is a list
of strings, and the user is presented with the candidate program
input.sliding(3).map(l => l.mkString). While familiar with
the mkString method, which formats a list into a string, and with
mapping a list, the user has never encountered sliding.

The user could look up the method and read up on its behavior.
However, oftentimes its behavior will be simple enough to understand
by its operation within the program. Consider, for example, the
following intermediate program states:

1 input //List("aa","bb","cc","dd","ee")

2 .sliding(3)//List(List("aa", "bb", "cc"),List("bb", "cc", "dd"),...)

3 .map(s => s.mkString) //List("aabbcc","bbccdd","ccddee")

Provided with these states, the user can understand that sliding
returns a list of sublists of length n beginning at each position in the
list – a sliding window of size n.

5.3 Enabling the User

Having introduced the formal framework for predicates, we now
wish to leverage it to create a user interaction model. We suggest the
following iterative process, which we have implemented for the user
study in Section 6.3.

A candidate program is displayed to the user alongside the debug
information. The top image in fig. 1 shows this in our UI. The user
is now able to study the program and accept or reject it.

The goal is to allow a user who is dissatisfied with the program
to directly express the source of dissatisfaction as easily as possible,
using predicates. Towards this end, we let the user point out a portion
of the program (e.g. by right-clicking it) and mark it as desirable or
undesirable, as seen in the bottom image in fig. 1.

This process of easily providing feedback on the program turns
predicates into a convenient tool for feedback to the synthesizer.

5.4 Enabling the synthesizer

As we have seen, the choice of predicates is crucial from the user’s
perspective. However, it is also important for the synthesizer to be
able to use them in maintaining and updating a representation of the
search space. To complete this section, we show how the predicates
described in Section 5.1 are naturally utilized by a synthesizer for
the domain of linear functional concatenations.
Enumerating synthesizer The state of the art in program synthe-
sis hinges on enumerating the program space in a bottom-up fash-
ion [3, 4, 11]. For the domain considered in this paper, bottom-up
enumeration consists of concatenating method calls to prefixes al-
ready enumerated, starting with the program of length 0, input. This
enumeration is restricted by types, i.e., by compilation. The search
space in this synthesizer can be represented as an edge-labeled tree
where the root is the program input and each edge is labeled by a
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method name fromV . Each finite-length path in the tree represents
the program that is the concatenation of every label along the path.
The tree is initially pruned by compilation errors (i.e., if f ∈ V does
not exist for the return type of m, it will be pruned from the children
of the node representingm). It now represents the candidate program
space for an unconstrained synthesizer state.

We can see that every program deemed undesirable by the opera-
tions affix and remove cannot be extended into a desirable program.
Therefore these extensions can be discarded and the tree representing
the candidate space can be pruned at the nodes of these programs.

This is an example of predicates that are well suited to the rep-
resentation of the state of the synthesizer, in that they not only aid
the user but also help guide the search of the space. Since the com-
bination of the enumeration and these predicates is monotone, a
program that was pruned from the search space will never have to
be considered in a future, more constrained iteration. This means
that the synthesizer does not need to be restarted across iterations.
However, even if it is, these predicates will allow it to construct a
much smaller search space to begin with.

6 Evaluation

To evaluate our approach, we compared three interaction models:

(1) PBE: replicating the state of the art in synthesis, the user can
communicate with the synthesizer via input-output pairs.

(2) Syntax: testing the new operation set proposed in Section 5,
the user can communicate with the synthesizer via syntactic
predicates on the program.

(3) GIM: testing the full model, the user can communicate via
both sets of predicates.

We limited the test of the granular interaction model to three op-
erations that are relevant to functional compositions and are easy
to understand. Therefore, we selected the operations detailed in
Section 5.1 as our basic set of granular operations.

We conducted two studies:
(1) A study of ideal sessions with different operations (i.e., fami-

lies of predicates) for a set of benchmarks.
(2) A controlled user study which tests the usability of a GIM

synthesizer for programmers and the benefits when measured
against a control group using PBE.

Synthesizer We implemented a simple enumerating synthesizer de-
scribed in Section 5.4 in Scala, using the nsc interpreter (used to
implement the Scala REPL). The vocabularyV is provided to the
algorithm, and programs are compiled and evaluated on the inputs.

In order to support the study in Section 6.2, the synthesizer accepts
input of additional examples, rejection of the current program, or of
affix, remove and retain predicates. In order to support the user study
in Section 6.3, it also precomputes the space of valid programs.

6.1 Problem set

We conducted the studies using a set of functional programming
exercises from three different domains: strings, lists and streams.
The exercises were collected from Scala tutorial sites and examples
for using MapReduce. The tasks, described in Tab. 3, were each
paired with a vocabulary and an initial set of examples.

Discussion As seen in Tab. 3, the set of valid programs is signifi-
cantly smaller than |V | |m

∗ | , but in many cases the space still con-
tains thousands or tens of thousands of programs. There is also a fair
amount of inherent ambiguity over the initial example set Einit , as
can be seen in the “reject only” column, representing the set of all
programs up to length |m∗ | that match Einit . This means that, even
when limiting the search space to the known length of the target
program, we would start with hundreds or thousands of matching
programs that need to be filtered by the user.

6.2 Ideal synthesis sessions

Experimental questions For each task in the problem set we an-
swered the following: under the ideal conditions of an expert user
and knowledge of the target program, how many questions (i.e.,
candidate programs) are posed to the user for each predicate family?
Test setup In order to answer these questions, each task in the prob-
lem set was run in four settings:
• Reject only: no operations except rejecting the current pro-

gram. This essentially enumerates programs that match the
initial example set.
• PBE, Syntax, and GIM: as described above, all with the

addition of a reject operation.
Examples and other predicates were selected by an expert user
(author of this paper), making an effort to create a run with fewer
iterations and more aggressive pruning of the space in each iteration.
Results Tab. 3 shows the results for each of the programming tasks.
As can be seen from the table, in ideal (i.e. thoroughly optimized,
expert user) runs, the number of questions produced by the synthe-
sizer for a PBE run was lowest. This was not unexpected: carefully
selected examples are a fast way to differentiate between programs.
Examples selected in less ideal conditions are left to the follow-
ing section. But we also see that in a run allowing all predicates,
substantially fewer questions were asked than when using syntactic
predicates only, with no more than one example.

The synthesizer and its outputs are available at http://bitbucket.
org/hilap/scala-enumerating-synthesizer/.

6.3 User study

To test the interaction between programmer and synthesizer, we
conducted a user study, where we compared the interaction of pro-
grammers with the synthesizer using the three families of operations:
PBE (control), Syntax, and GIM.
Research questions We examined the following questions:
(1) Are answers consisting of syntactic predicates easier or faster to

generate than example predicates? This question was examined
first by comparing, for each task, the average and median itera-
tion times with the synthesizer for the control group (PBE) and
the Syntax group. Second, when users were allowed both (GIM),
the time spent on iterations where they provided examples was
measured against their average time.

(2) Is the total time to solution improved by adding or exchanging
the available predicates?

(3) Are users able to reach a correct program using each of the
predicate sets?

http://bitbucket.org/hilap/scala-enumerating-synthesizer/
http://bitbucket.org/hilap/scala-enumerating-synthesizer/
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Number of Candidates
candidate reject

Benchmark |V | |Einit | |m∗ | space size only PBE Syntax GIM
st

ri
ng

s
dropnthletter Drop every 5th letter in a string 20 1 3 280 4 2 3 2 (1)
freqbigram Most frequent bigram in a string 19 1 6 118261 674 4 8 6 (0)
frequword Most frequent word in a string 25 1 4 4853 126 5 8 6 (1)
linesinfile Number of lines in file 20 1 2 47 4 3 4 3 (1)
nonemptylines Number of non-empty lines in file 21 1 3 1664 29 2 3 3 (1)

lis
ts

anagrams Group words that are anagrams 17 1 6 13554 12 3 3 3 (0)
histogram Create a histogram of number list 12 1 5 4208 37 3 9 3 (1)
median Find the median of a list of numbers 20 1 4 71211 1663 6 14 9 (1)
posinlist Get all positive numbers from list 20 1 2 190 17 3 4 4 (1)
sudokusquare Validate a square in sudoku 17 1 5 1602 118 3 7 4 (0)
sumsquares Sum of squares of a list of numbers 20 1 2 120 2 2 2 2 (0)

st
re

am
s bitstream Next integer from a stream of bits 17 2 4 3717 101 2 8 5 (1)

numhashtags Count hashtags in a stream of tweets 15 1 7 11527 2 2 2 2 (0)
slidingavg Average next three values from every index 25 1 4 60479 125 2 2 2 (0)

Table 3: The test setup of 14 synthesis experiments, showing the ambiguity inherent in Einit , and the number of iterations to the target program in an ideal
synthesis session with each available set of operations. Parentheses indicate examples used.

(4) Do users prefer examples? This question examined the choices
made by the participants in the GIM group, who could choose be-
tween all predicates. We tested how often examples were chosen,
and whether the task being solved affected this preference.

(5) Are users in PBE sessions distracted by undesirable sequences
that cannot be removed? We tested PBE sessions for recurrence
of sequences deemed undesirable by users in the Syntax and
GIM groups, to try to determine whether these recurred enough
to distract users. We also checked for acceptance of equivalent
programs with superfluous elements as mentioned in claim 1.
Anecdotal opinions offered by participants are also presented.

Most questions were examined on all participants. We show data
for the small set of users experienced in Scala against those new to
Scala when the difference is of interest.
Test setup 32 developers participated in the study. They consist of 7
undergraduates in their final year of a CS degree, 9 graduate students
in CS, most with a history as developers outside academia, and 16
industry developers employed by four different companies. Of the
32, 8 had prior experience with the Scala programming language.

The participants in the study were evenly distributed between
three test groups: PBE, Syntax and GIM. Each participant was ran-
domly assigned to one of the test groups. Not all participants per-
formed all tasks (scheduling constraints were cited for the most part).
The order of the tasks was randomized for each user.

The reject operation was not allowed in any group, forcing users
to provide the process with new information as they would in any
state of the art synthesizer, rather than just iterate the program space.

Each participant was asked to use the synthesizer to solve three
programming questions. The three problems—frequword, nonempty-
lines, and histogram—were selected from the tasks tested in sec-
tion 6.2 because of their high level of ambiguity based on the initial
example, and their requiring no additional libraries or definitions
outside the Scala standard library to solve (i.e., the programs could
be run in a Scala console with no imports or definitions).

Participants were given a short introduction to Scala, if they were
not already familiar with it, and assisted themselves with a Scala
REPL, but no online sources or documentation.

Correctness of a participant’s solution was defined functionally,
using predetermined tests, and including no nullipotent calls (these
were “equivalent”). There might be several correct programs in the
space; e.g., when counting non-blank lines, solutions allowing for
CRLF line-ends were accepted as long as they correctly handled LF.

iteration number of correct
no. of time (sec) iterations target equiv.

task group sessions avg med avg med finished answer answer

histogram
PBE 11 163.34 131.97 2.45 2.0 11 1 10
Syntax 9 86.27 59.97 12.11 8.0 9 3 4
GIM 10 98.78 96.18 8.90 7.5 10 5 4

no. lines
with text

PBE 11 170.13 168.17 2.73 2.0 11 0 8
Syntax 8 82.16 60.56 10.50 9.5 7 3 1
GIM 11 78.26 65.78 8.82 8.0 9 4 3

most
frequent

word

PBE 11 114.52 71.27 4.45 4.0 10 9 0
Syntax 10 58.28 50.34 22.10 15.0 8 7 0
GIM 11 79.87 53.84 8.82 8.0 10 8 0

Table 4: Summary of the three tasks performed in the user study (all users).

Implementation Participants performed the tasks using the UI shown
in Figure 1. The space of programs was precomputed by the enumer-
ating synthesizer from Section 6.1 and over the same initial inputs,
up to a program length of 6. In each iteration a program that upholds
all predicates given by the user was selected from the set of programs.
Selection used a hash-based criterion to prevent lexicographical or-
dering and favoring of short programs, in order to also show the user
complex programs. At the end of every iteration the user’s answers
were added to the synthesizer’s state and the programs are filtered
accordingly. If the precomputed set was exhausted, the user was
given the option of starting over or abandoning the current task.

6.4 User study results

We address each question individually.
Question 1: Are answers consisting of syntactic predicates easier
or faster to generate than example predicates? The average and
median times per iteration are shown in Table 4. Medians are also
shown in Fig. 2.

We examined the distributions of data using the Mann-Whitney
test. The threshold for statistical significance was chosen as p<0.05.
A significant difference was found in the time per iteration between
the control (PBE) group and the syntax-only group for all tests: his-
togram (131.97s, 59.97s, p=0.03), nonemptylines (168.17s, 60.56s,
p=0.03) and frequword (71.27s, 50.34s, p=0.04). A significant dif-
ference was found between the control group and the GIM group
for two of the three tests: histogram (131.97s, 96.18s, p = 0.03),
nonemptylines (168.17s, 65.78 s, p=0.03), but not for frequword
(71.27s, 53.84s, p=0.058). Additionally, a significant difference was
found between the syntax-only group and the GIM group for one
test: histogram (59.97s, 96.18s, p=0.047), but not for nonemptylines
(60.56s, 65.78s, p=0.33) or frequword (50.34s, 53.84s,p=0.19).
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sessions
no. of used percent examples per user

task sessions examples avg med min max

all
users

histogram 10 9 37.6% 35.0% 0.0% 85.7%
nonemptylines 11 8 29.7% 31.0% 0.0% 66.7%
frequword 11 10 36.1% 37.5% 0.0% 85.7%

users histogram 2 2 74.1% 74.1% 62.5% 85.7%
familiar nonemptylines 2 2 46.7% 46.7% 33.3% 60.0%
with Scala frequword 2 2 29.9% 29.9% 22.2% 37.5%
users histogram 8 7 28.5% 17.7% 0.0% 66.7%
unfamiliar nonemptylines 9 6 25.9% 30.0% 0.0% 66.7%
with Scala frequword 9 8 37.5% 37.5% 0.0% 85.7%

Table 5: Proportional part (%) of examples in the predicates provided by
GIM group users. Some used no examples at all, none used only examples.

These results imply that, with the exception of the frequword test
for the GIM group, iteration time is faster when using either syntax
only or both syntax and example predicates than when solving the
same problem using PBE alone. Additionally, with the exception of
the histogram task, the slowdown in iteration time between syntax-
only and GIM seems to be coincidental.

In addition, we looked only at the session for users in the GIM
group and within each session examined the time to create an exam-
ple against the average iteration time. There is a slowdown of 19.5%
in iteration time with an example, and we see that this difference is
statistically significant (75.03s, 90.11s, p=0.049).

We can therefore answer question 1 in the affirmative on both
counts: syntactic predicates are faster to generate than examples,
both when examining the test groups against the PBE group, and
when examining the users with access to both against themselves.
Question 2: Is the total time to solution improved by adding or
exchanging the available predicates? We noticed a change in the
median total time between the control (PBE) and the other groups
(Syntax and GIM), indicating a possible slowdown. However, this
change was not statistically significant for any of the individual tests
or for the unification of all tests (p > 0.25 for all). Therefore, while
we do not answer question 2 in the affirmative – as the total time
was not improved in either of the test groups – we can also say that
the evidence of a slowdown may be coincidental.
Question 3: Are users able to reach a correct program using each
of the predicate sets? The correctness results in Table 4 are visu-
alized in Fig. 4. Aside from the histogram task, completed by all
users, all other tasks had some users stopping without accepting a
program. The success percentage in reaching any functionally cor-
rect response is highest for PBE (100%, 73%, 90%), lowest for Syntax
(78%, 57%, 87%), and rebounds with GIM (90%, 77%, 80%) to levels
close to the control, even overtaking it for the nonemptylines task.
Question 4: Do users prefer examples? A summary of how often
users chose examples appears in Table 5 and Fig. 3. We can see a
distinction between users familiar with Scala and users who are not.
While users familiar with Scala used examples in every task, users
unfamiliar with Scala did not: in every task, at least one user–and as
many as 1/3 of the users–avoided them altogether. The proportional
part of examples out of the total predicates used in the task is fairly
low for the entire test group, ranging from 31% to 37.5% (median).

We compared users familiar and unfamiliar with Scala and found
that the preference for examples is inverse between the two groups:
users familiar with Scala selected far more examples (all over 60%
examples) for the histogram task and preferred other predicates for

PBE
GIM/Syntax times seen distracting
users saw in session occurrences users

removed sequence and removed min max (average) distracted

nu
m

of
lin

es tail 84.2% (16) 1 4 2.8 45.5% (5)
takeWhile(c => c != "\n") 73.7% (14) 1 4 2.7 54.5% (6)
filterNot(c => c==’\r’ || c==’\n’) 57.9% (11) 0 3 2.3 27.3% (3)
filter(!_.isEmpty) 27.3% (3) 0 3 2.3 27.3% (3)
tail.takeWhile(c => c != "\n") 15.8% (3) 1 4 2.8 45.5% (5)

m
os

tf
re

qu
en

tw
or

d

takeRight(1) 100.0% (12) 0 1 0 0.0% (0)
drop(10) 84.6% (11) 0 1 0 0.0% (0)
drop(1) 76.5% (13) 0 3 2.5 16.7% (2)
takeRight(6) 76.2% (16) 1 3 2.4 58.3% (7)
dropRight(1) 71.4% (15) 0 7 3.3 33.3% (4)
take(5) 57.1% (12) 1 5 2.8 66.7% (8)
last 42.9% (6) 0 3 3 16.7% (2)
drop(10).drop(1) 41.7% (5) 0 1 0 0.0% (0)
takeRight(6).takeRight(6) 38.1% (8) 1 2 2 8.3% (1)

hi
st

og
ra

m toMap 57.9% (11) 1 1 0 0.0% (0)
map(_._1 -> 1) 42.1% (8) 1 1 0 0.0% (0)
zipWithIndex 26.3% (5) 1 1 0 0.0% (0)
map(_._1.toInt) 15.8% (3) 1 1 0 0.0% (0)

Table 6: Frequently removed method sequences in the Syntax and GIM
groups and their occurrence in the PBE group.

the frequword task. Conversely, those unfamiliar with Scala pre-
ferred examples (but not as overwhelmingly, half the participants
using over 30% examples) for frequword and favored other predi-
cates (half the participants using under 20% examples) for histogram.
This seems to suggest a relationship with the difficulty of the task –
histogram is harder to solve than frequword. Despite this, even when
examples were favored, they were never the only tool used.
Question 5: Are users in PBE sessions distracted by undesirable
sequences that cannot be removed? We first identified such se-
quences by counting how many users who could remove them (i.e.,
had access to a remove predicate) actually did so, then tested sessions
of users from the PBE group for their appearance. Table 6 shows
the results. It is important to note that not all commonly removed
sequences appeared in PBE sessions, itself an indicator of the extent
to which syntax operations change the traversal of the search space.

These undesirable sequences appeared up to 7 times in a single
user session. Some of these sequences distracted (i.e. kept reappear-
ing) up to 2/3 of the users performing a task, and on average 22.2%
of the users. Furthermore, a distracting sequence appeared, on aver-
age, about 3 times in each session. This shows that the inability to
remove a letter or sequence discussed in claim 1 is neither a purely
theoretical problem, nor a problem leading only to equivalent rather
than correct programs, as seen in Table 4, but a real distraction from
the ability to synthesize over an expressive vocabulary.

Figure 4 also shows that in two of the tasks (histogram and
nonemptylines) most or all PBE users ended up accepting a pro-
gram with superfluous elements. For example, in many histogram
sessions a program was accepted with a call of toMap on a map,
and in many nonemptylines sessions a program was accepted that
called filterNot(c => c == ’\r’ || c == ’\n’) on a list
of strings. Both are nullipotent elements: toMap creates a map from
a map, and filterNot(c => c == ’\r’ || c == ’\n’) com-
pares strings to characters and so always filters nothing.

In addition, when PBE users stopped at an equivalent program
rather than the target program, we tested the number of iterations
spent in the same equivalence class (i.e. presented with the same
candidate program) before accepting the program. While most users
accepted equivalent programs immediately, one user performing the
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Figure 2: Median iteration time per task in each test group. Significant change
from PBE is indicated by *.

Figure 3: Examples used (med, min, max) by GIM users (all operations).
None used 100% examples.

Figure 4: No. users that reached the target program or an equivalent (non-
functional differences) result.

histogram task tried an additional iteration and one user tried two ad-
ditional iterations. For nonemptylines, two users tried an additional
iteration and one tried two additional iteration. Altogether, in 22% of
the sessions users tried unsuccessfully to improve upon the program
they already had, either trying to get rid of a nullipotent element or
not realizing it has no influence, before finally accepting it.

We chose not to tackle the questions of user preference and mea-
sures of distraction with a questionnaire, sticking instead only to
empirical results. Despite that, we wish to recount several anecdotes
from the course of the experiment that may help shed light on the
behavior observed. Users in the PBE test group expressed very spe-
cific frustration on several occasions such as “it insists on using
take(5) no matter what I do” while solving the frequword task, or

“I couldn’t get rid of these nonsense functions, I just wanted to shake
it” after solving the nonemptylines task.

The user study UI and recorded user sessions are available at
http://bitbucket.org/hilap/gim-ui/.

6.5 Discussion and conclusions

In this section we discuss the results of the study.

Speed and ease of use We see a speedup of iteration time when using
examples versus other predicates. The change is greatest between the
PBE and Syntax groups, with a smaller speedup when examining the
GIM group against itself. We may attribute this difference between
the two tests to the fact that the users in the GIM group resort to
examples only when examples are convenient or readily apparent
and therefore take less time to create.

We conclude that when combined with a low preference for ex-
amples, syntax predicates are easier for the user in general.

In addition, considering the shorter iteration time, the increased
number of iterations (itself statistically significant) and the lack of
significance in the change in total time, we conclude that changing
the predicates does not change time spent on synthesis tasks. It
simply leads to using more, but shorter and easier, iterations.
Distracting elements and user frustration Much of the frustration
users in the PBE group expressed had to do with recurring pro-
gram elements they thought were useless. Recurring undesirable
sequences were experienced by up to two-thirds of the users and
recurred on average 3 times during the session, certainly explains
their frustration. In addition, some PBE users wasted time and effort
trying to remove elements that cannot be removed. We therefore
conclude that avoiding this distraction by giving users more tools
would, at the very least, make for more content users.
Helpfulness of debug information We attribute the success rate and
relatively short use times of a set of developers who have never seen
Scala to the guidance offered by debug information. We did not
target this specifically in the experiment, but 9 separate users told us
that it was anywhere from “helpful” to “lifesaving” in understanding
unfamiliar methods and keeping track of examples.
Correctness with syntax operations The Syntax group reached fewer
functionally correct programs than the PBE group, and the GIM
group did almost as well as the PBE group. We attribute this to the
helpfulness of debug information: it seems to be easier to make a
correct decision about a program when presented with its breakdown
over additional examples, rather than just the single initial example
available to the Syntax group.
Preferred operations When considering all users in the GIM group,
there appears to be a very strong preference for syntactic predicates
over examples for all tasks. However, for a sub-group, preferences
may be reversed: Users familiar with Scala preferred more exam-
ples than those unfamiliar with Scala, and preferred examples over
other predicates in the harder task, histogram, and predicates over
examples in the easier task, frequword. This may have to do with
their ability to better understand candidate programs: savvier pro-
grammers read the programs more easily and so prefer to break the
observed behavior with examples, while inexperienced programmers
focus on individual program elements. This remains a conjecture as
there were only 2 users familiar with Scala in the GIM group.

7 Threats to Validity

Cross validation The study was not cross-validated (i.e., having
each user perform tasks in several groups). Because the predicate
families include each other, we felt it would create a bias toward
some operations based on order. As cross validation should not be
used when it creates bias, we decided against it. We tried to negate
some of the differences between individual programmers by drawing

http://bitbucket.org/hilap/gim-ui/
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participants from similar backgrounds – same year in university,
developers in the same department – and then dividing them evenly.
Sampling of population An external validity issue mentioned in
Section 6.5 is the relatively small percentage of participants familiar
with Scala – only 25% of the participants in the study, and as small as
20% in some groups due to random assignment. As mentioned, this
prevents us from making general claims about differences between
programmers based on their familiarity with Scala. However, we can
still generalize our claims with regard to programmers working in
a language they have not encountered before – the majority of the
participants. In addition, our sample of undergraduates is not random
but consists of students who felt familiar enough with functional
programming to agree to participate. This may skew the ability to
generalize. We hope this will not significantly affect the compiled
results as undergraduates comprise less than 22% of the participants.

8 Related Work

Syntax-based synthesis [2] is the domain of program synthesis
where the target program is derived from a target programming lan-
guage according to the syntax rules. [19, 21, 30, 35] all fall within
this scope. The implementation of GIM presented in this paper is
syntax-based, where the target language is a functional subset of
Scala as specified by V . Syntax-based synthesis algorithms often
use a user-driven interaction model [14], which GIM extends.
Programming by Example In PBE the interaction between user and
synthesizer is restricted to examples, both in initial specifications
and any refinement. FlashFill [13, 29] is a PBE tool for automating
transformations on an Excel data set, and is included in Microsoft
Excel. It does not show its users the program, only its application
on the data set. Because the resulting program is never inspected, it
might still suffer from overfitting to the examples and is not reusable.
Escher [1] is a PBE tool for synthesizing recursive functions. Like
FlashFill, Escher decomposes the task based on the examples, search-
ing for programs that could be used as sub-programs in condition
blocks. Escher is parameterized by the operations used in synthesis,
and like FlashFill, allows refinement only by re-running the process.
Type-Directed Synthesis is a category of synthesis algorithms that
perform syntax-based synthesis mainly driven by the types of vari-
ables and methods, and the construction of the program is performed
through type-derivation rules. While type-directed methods tend to
be user-driven, many of them [12, 15, 27] require only initial spec-
ifications and the user manually chooses from multiple candidate
programs that match the specification. The philosophy behind GIM
is that a user should not consider many programs (there could be
dozens or more) at a time with no additional data. Rather, programs
should be considered one at a time, with additional information that
can help the user consider the program in depth and direct the search.
Adding examples to Type-directed synthesis Recent work connects
PBE with type-driven synthesis [11, 25]. These tools accept exam-
ples (and their inherent type information) as initial specifications,
use type derivations to produce candidates, and verify them with the
examples. BIGλ [31] synthesizes MapReduce processes via sketch-
ing and type derivations over lambda calculus and a vocabulary.
Examples are also used to verify determinism. SYPET [10] is a type-
directed, component-based synthesis algorithm that uses Petri-nets

to represent type relationships, and finds possible programs by reach-
ability. Candidates are tested using tests provided by the user. SYPET

requires full test cases rather than examples, which, while more
descriptive, still require the user to learn a lot about the library in
order to program the test case, an effort that may be equal to learning
about the methods required to solve the programming task at hand.
Sketching The user can restrict the search space via sketches [32–
34], structural elements (e.g. conditions or loops) which includes
holes to be synthesized. Sketching is a way to leverage a program-
mer’s knowledge of expected syntactic elements, and when used
in conjunction with restrictions on the syntax [2] can allow very
intricate synthesis. However, since the most general sketch, a pro-
gram with only a single hole, is usually too unconstrained for the
synthesizer, the user must come armed with at least some knowledge
of the expected structure rather than iteratively build it as in GIM.
Enriching user input Several existing works have enriched the spec-
ification language, or the interface for specifying program behavior.
Adding examples to type-directed synthesis is an example of such en-
richment. Another approach by Polikarpova et al. [28] with SYNQUID

is to use refinement types instead of types, which encode constraints
on the solution program, which can be imposed on the candidate
space. While these constraints are mainly semantic, unlike GIM’s
syntactic predicates, this embodies the same ideal of passing off
some responsibility to a user who can understand code, or in this
case, write code. Likewise, Barman et al. [6] suggest an interactive,
user-dependent extension of sketching intended to synthesize the
sketch itself by leveraging the user to decompose the specifications
and examine the results. Angelic programming [8] leverages pro-
grammer knowledge by an expanded interface from synthesizer to
user: the user is shown a synthesized program with a nondetermin-
istic “angelic operation” and execution traces for that operation to
make the program correct, and it is their responsibility to identify
the necessary operation to replace the angelic operator.

9 Conclusion
We presented a novel granular interaction model (GIM) for inter-
acting with a synthesizer. This interaction model extends common
PBE approaches and enables a programmer to communicate more
effectively with the synthesizer.

We prove that using only examples is insufficient for eliminating
certain undesired operations in a program, where these undesired
operations are easy to eliminate when using syntactic operations
made available by GIM.

We further show the effectiveness of GIM by a controlled user
study that compares GIM to standard PBE. Our study shows that
participants have strong preference (66% of the time) for granular
feedback instead of examples, and are able to provide granular
feedback up to 3 times faster (and 2.14 times faster on average).
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