Abstraction-Based Interaction Model for Synthesis

Hila Peleg, Technion Shachar Itzhaky, Technion Sharon Shoham, Tel Aviv University

The research leading to these results has received funding from the European Union's - Seventh Framework Programme (FP7) under grant agreement n° 615688 – ERC- COG-PRIME.

Task: find the most frequent bigram in a string.

Task: find the most frequent bigram in a string.

"abdfibfcfdebdfdebdihgfkjfdebd"

₩

"bd"

Task: find the most frequent bigram in a string.

"a**bd**fibfcfde**bd**fde**bd**ihgfkjfde**bd**" ↓ "bd"

input.takeRight(2)

Task: find the most frequent bigram in a string.

"a**bd**fibfcfde**bd**fde**bd**ihgfkjfde**bd**" ↓ "bd"

input.takeRight(2)

Lieberman, H. (2000). Programming by example. Communications of the ACM, 43(3), 72-72.

Lieberman, H. (2000). Programming by example. Communications of the ACM, 43(3), 72-72.

Input ↓ Output

 $\{m \in M \mid [m](input) = output\}$

$$\{m \in M \mid \llbracket m \rrbracket(input) = output\}$$

input.takeRight(2)

$$\{m \in M \mid \llbracket m \rrbracket(input) = output\}$$

input.takeRight(2)

Exclude programs with takeRight

$$\{m \in M \mid \boldsymbol{p}(m)\}$$

input.takeRight(2)

Exclude programs with takeRight

Our Goal

- To model user-driven synthesis
 - Works in practice but we do not understand its limitations
- Properties
 - Of the synthesizer
 - Of the user
- Guarantees
 - Termination (in paper)
 - Are "bad sessions" recoverable

Iterative, interactive synthesis

Select

- Candidate program is selected via *some* selection criterion: *Select*
- Select usually designed to return a program from U* ASAP (in 1-2 iterations)
- There is little theoretical work about *the long run*

 $\alpha(C) = \{ p \in \mathcal{P} | \forall m \in C.m \vDash p \}$

 $\alpha(C) = \{ p \in \mathcal{P} | \forall m \in C.m \vDash p \}$

 $\alpha(C) = \{ p \in \mathcal{P} | \forall m \in C.m \vDash p \}$

Synthesis Session

• A synthesis session:

Candidate program $S = (A_0, q_1)(A_1, q_2) \dots$ User answer

Initial specifications

- Synthesizer state: $S_i = S_{i-1} \sqcap A_i$
- $q_i = Select(S_{i-1})$, or $q_i \in \gamma(S_{i-1}) \cup \{\bot\}$
- If $q_i \in U^* \cup \{\bot\}$, the session terminates

- The user is aiming for some *ideal* set of programs $U^* \subseteq U$ (where U is the universe of all programs)
- The realizable target set is $M^* = M \cap U^*$
- **Correctness:** A user step is correct when $A_i \subseteq \{p \in \mathcal{P} \mid \exists m \in U^*. m \vDash p\}$

- The user is aiming for some *ideal* set of programs $U^* \subseteq U$ (where U is the universe of all programs)
- The realizable target set is $M^* = M \cap U^*$
- **Correctness:** A user step is correct when $A_i \subseteq \{p \in \mathcal{P} \mid \exists m \in U^*. m \models p\}$

- The user is aiming for some *ideal* set of programs $U^* \subseteq U$ (where U is the universe of all programs)
- The realizable target set is $M^* = M \cap U^*$
- **Correctness:** A user step is correct when $A_i \subseteq \{p \in \mathcal{P} \mid \exists m \in U^*. m \models p\}$

- The user is aiming for some *ideal* set of programs $U^* \subseteq U$ (where U is the universe of all programs)
- The realizable target set is $M^* = M \cap U^*$
- Correctness: A user step is correct when $A_i \subseteq \{p \in \mathcal{P} \mid \exists m \in \underline{U}^*. m \vDash p\}$

- The user is aiming for some *ideal* set of programs $U^* \subseteq U$ (where U is the universe of all programs)
- The realizable target set is $M^* = M \cap U^*$
- Correctness: A user step is correct when $A_i \subseteq \{p \in \mathcal{P} \mid \exists m \in U^*. m \vDash p\}$

- The user is aiming for some *ideal* set of programs $U^* \subseteq U$ (where U is the universe of all programs)
- The realizable target set is $M^* = M \cap U^*$
- Correctness: A user step is correct when $A_i \subseteq \{p \in \mathcal{P} \mid \exists m \in U^*. m \vDash p\}$

 $(1 \text{ to } n) \cdot fold((x, z) =>x+z) + 1$

- The user is aiming for some *ideal* set of programs $U^* \subseteq U$ (where U is the universe of all programs)
- The realizable target set is $M^* = M \cap U^*$
- **Correctness:** A user step is correct when $A_i \subseteq \{p \in \mathcal{P} \mid \exists m \in U^*. m \vDash p\}$

Х

9

User guarantees

- In a synthesis session:
 - 1. The user is correct for as long as possible. When not possible, $A_i = \perp$
 - 2. The user will always accept a program from M^*

Progress

- Adding new predicate doesn't guarantee that the session is progressing
- $S_{n-1} \sqsubset S_n$ could still mean that $\gamma(S_n) = \gamma(S_{n-1})$
- Synthesizers usually don't check

Easiest way to make progress

Easiest way to make progress

- In other words: something that's wrong with the current program
- Rule out *at least* the current program

Easiest way to make progress

- In other words: something that's wrong with the current program
- Rule out *at least* the current program
- Important when $q_i \in \gamma(S_{i+1}) \Rightarrow Select(S_{i+1}) = q_i$
- Easy to check, but too strong

• A_i makes weak progress if $\gamma(S_{n-1} \sqcap A_i) = \gamma(S_n) \subsetneq \gamma(S_{n-1})$

• We can provide positive reinforcement

• A_i makes weak progress if $\gamma(S_{n-1} \sqcap A_i) = \gamma(S_n) \subsetneq \gamma(S_{n-1})$

• We can provide positive reinforcement

 $(1 \text{ to } n) \cdot fold((x, z) =>x+z) + 1$

• A_i makes weak progress if $\gamma(S_{n-1} \sqcap A_i) = \gamma(S_n) \subsetneq \gamma(S_{n-1})$

• We can provide positive reinforcement

• A_i makes weak progress if $\gamma(S_{n-1} \sqcap A_i) = \gamma(S_n) \subsetneq \gamma(S_{n-1})$

We can provide positive reinforcement

- Harder to check: $S_i \not\Rightarrow A_i$
- Once we know there is progress, we know some things about termination (see paper)

Convergence

- A session **converges** if $\gamma(S_n) \subseteq M^*$
 - User correctness means the session ends at state n
- Converges successfully: $\emptyset \neq \gamma(S_n) \subseteq M^*$

• Core set: the set of **finite** underapproximations of *M*^{*}

$$\mathcal{B} = \left\{ B \subseteq \mathcal{P} \middle| \begin{array}{c} 0 \neq \gamma(B) \subseteq M^* \\ \wedge |B| \in \mathbb{N} \end{array} \right\}$$

• Core set: the set of **finite** underapproximations of *M*^{*}

$$\mathcal{B} = \left\{ B \subseteq \mathcal{P} \middle| \begin{array}{c} 0 \neq \gamma(B) \subseteq M^* \\ \wedge |B| \in \mathbb{N} \end{array} \right\}$$

• Core set: the set of **finite** underapproximations of *M*^{*}

$$\mathcal{B} = \left\{ B \subseteq \mathcal{P} \middle| \begin{array}{c} 0 \neq \gamma(B) \subseteq M^* \\ \wedge |B| \in \mathbb{N} \end{array} \right\}$$

- User intention is realizable if $M^* \neq \emptyset$
- \mathcal{P} -realizability: can converge under \mathcal{P}

• Core set: the set of **finite** underapproximations of *M*^{*}

$$\mathcal{B} = \left\{ B \subseteq \mathcal{P} \middle| \begin{array}{c} 0 \neq \gamma(B) \subseteq M^* \\ \wedge |B| \in \mathbb{N} \end{array} \right\}$$

- User intention is realizable if $M^* \neq \emptyset$
- \mathcal{P} -realizability: can converge under \mathcal{P}

 M^* is \mathcal{P} -realizable if $\mathcal{B} \neq \emptyset$

Infeasible point

- A state where $\gamma(S_i) \cap M^* = \emptyset$
- Select can't succeed, even in best case
- The First Infeasible Point is the first point of failure
- Can we backtrack before an infeasible point?

Point of inevitable failure

- State S_i is an POIF if $\forall B \in \mathcal{B}. \gamma(S_i) \cap \gamma(B) = \emptyset$
- Specifically, S_i is an POIF if $\gamma(S_i) \cap M^* = \emptyset$

Point of inevitable failure

- State S_i is an POIF if $\forall B \in \mathcal{B}. \gamma(S_i) \cap \gamma(B) = \emptyset$
- Specifically, S_i is an POIF if $\gamma(S_i) \cap M^* = \emptyset$
- But not necessarily

Point of inevitable failure

- State S_i is an POIF if $\forall B \in \mathcal{B}. \gamma(S_i) \cap \gamma(B) = \emptyset$
- Specifically, S_i is an POIF if $\gamma(S_i) \cap M^* = \emptyset$
- But not necessarily
- As long as S_i is not an POIF we can still converge
- Can we **backtrack** before an inevitable point of failure?

Backtracking from failure

Theorem: for any $k \in \mathbb{N}$ there exists a session S where state S_i is an point of inevitable failure and only state S_{k+i} is the first infeasible point.

Backtracking from failure

Theorem: for any $k \in \mathbb{N}$ there exists a session S where state S_i is an point of inevitable failure and only state S_{k+i} is the first infeasible point.

Essentially: there is no bound on the number of steps to backtrack once failure is apparent.

Proof: by construction

An unbounded session

- Candidate program space *M* is spanned by:
 - if-else
 - ==
 - lists of ints ([],[1,2], etc.)
 - recursive call ${\tt f}$
 - the input variable i
 - cons
 - max
 - remove
 - sort
 - reverse

- Candidate program space *M* is spanned by:
 - if-else
 - ==
 - lists of ints ([],[1,2], etc.)
 - recursive call ${\tt f}$
 - the input variable i
 - cons
 - max
 - remove
 - sort
 - reverse

Example candidate: if (i==[]) [] else cons(max(i), f(remove(i,max(i)))

- Candidate program space *M* is spanned by:
 - if-else
 - ==
 - lists of ints ([],[1,2], etc.)
 - recursive call ${\tt f}$
 - the input variable i
 - cons
 - max
 - remove
 - sort
 - reverse

Example candidate: if (i==[]) [] else cons(max(i), f(remove(i,max(i)))

Example candidate: reverse(sort(i))

- Candidate program space *M* is spanned by:
 - if-else
 - ==
 - lists of ints ([],[1,2], etc.)
 - recursive call f
 - the input variable i
 - cons
 - max
 - remove
 - sort
 - reverse

- Available predicates in $\mathcal{P}\colon$
 - Input-output examples
 - *exclude(e)*, for any program element e

Example candidate:

if (i==[]) []
else cons(max(i),
 f(remove(i,max(i)))

Example candidate: reverse(sort(i))

Task: sort a list in descending order.

Task: sort a list in descending order.

Input: [], Output: []
Input: [1,2],Output: [2,1]

Task: sort a list in descending order.

Input: [], Output: [] Input: [1,2],Output: [2,1]

reverse(i)

Task: sort a list in descending order.

Input: [], Output: [] Input: [1,2],Output: [2,1]

reverse(i)

exclude(reverse)

Task: sort a list in descending order.

Input: [], Output: [] Input: [1,2],Output: [2,1]

reverse(i)

exclude(reverse)

Point of Inevitable Failure

Task: sort a list in descending order.

Input: [], Output: [] Input: [1,2],Output: [2,1]

reverse(i)

exclude(reverse)

Point of Inevitable Failure

```
if (i==[1,2])[2,1]
else i
```

if (i==[1,2])[2,1] else i

if (i==[1,2])[2,1] else i

Input: [1,3], Output: [3,1]

if (i==[1,2])[2,1]
else i
Input: [1,3], Output: [3,1]
if (i==[1,2]) [2,1]
else if (i==[1,3]) [3,1]
else i

if (i==[1,2])[2,1]
else i
Input: [1,3], Output: [3,1]
if (i==[1,2]) [2,1]
else if (i==[1,3]) [3,1]
else i

•

if (i==[1,2])[2,1]
else i
Input: [1,3], Output: [3,1]
if (i==[1,2]) [2,1]
else if (i==[1,3]) [3,1]
else i

Example candidate:

if (i==[]) []
else cons(max(i),
 f(remove(i,max(i)))

if (i==[1,2])[2,1]
else i
Input: [1,3], Output: [3,1]
if (i==[1,2]) [2,1]
else if (i==[1,3]) [3,1]
else i

•

if (i==[1,2])[2,1]
else i
Input: [1,3], Output: [3,1]
if (i==[1,2]) [2,1]
else if (i==[1,3]) [3,1]
else i
:

exclude(==)

if (i==[1,2])[2,1]
else i
Input: [1,3], Output: [3,1]
if (i==[1,2]) [2,1]
else if (i==[1,3]) [3,1]
else i

•

exclude(==)

Conclusion

- An iterative, interactive model of synthesis
- An abstract domain of predicates
- Progress
- Convergence
- The unboundedness of backtracking
- We hope these results help future synthesizer designers