Abstraction-Based Interaction Model for Synthesis

(V) Hila Peleg, Technion

च Shachar Itzhaky, Technion Sharon Shoham, Tel Aviv University

Programming by Example

Task: find the most frequent bigram in a string.

Programming by Example

Task: find the most frequent bigram in a string.
"abdfibfcfdebdfdebdihgfkjfdebd" \Downarrow
"bd"

Programming by Example

Task: find the most frequent bigram in a string.

"abdfibfcfdebdfdebdihgfkjfdebd" \Downarrow

```
"bd"
```

input.takeRight(2)

Programming by Example

Task: find the most frequent bigram in a string.
"abdfibfcfdebdfdebdihgfkjfdebd" \Downarrow
"bd"
input.takeRight(2)

Programming by Example

Task: find the most frequent bigram in a string.
"abdfibfcfdebdfdebdingfkjfdebd"
"bd"
input.takeRight (2)
"abbba"
\Downarrow
"bb"

Programming by Example

Task: find the most frequent bigram in a string.

```
"abdfibfcfdebdfdebdihgfkjfdebd"
    \Downarrow
"bod"
```

input.takeRight(2)
"abbba"
\Downarrow
"b.b"
input.substring (1, 3)

Programming Not Only by Example

Input
 \Downarrow
 Output

Programming Not Only by Example

$\{m \in M \mid \llbracket m \rrbracket($ input $)=$ output $\}$

Programming Not Only by Example

$\{m \in M \mid \llbracket m \rrbracket($ input $)=$ output $\}$
input.takeRight(2)

Programming Not Only by Example

$\{m \in M \mid \llbracket m \rrbracket($ input $)=$ output $\}$

input.takeRight(2)

Exclude programs with takeRight

Programming Not Only by Example

$\{m \in M \mid p(m)\}$

input.takeRight(2)

Exclude programs with takeRight

Our Goal

- To model user-driven synthesis
- Works in practice but we do not understand its limitations
- Properties
- Of the synthesizer
- Of the user
- Guarantees
- Termination (in paper)
- Are "bad sessions" recoverable

Iterative, interactive synthesis

Select

- Candidate program is selected via some selection criterion:
Select
- Select usually designed to return a program from U^{*} ASAP (in 1-2 iterations)
- There is little theoretical work about the long run

An abstract domain

$$
\alpha(C)=\{p \in \mathcal{P} \mid \forall m \in C . m \vDash p\}
$$

An abstract domain

$$
\alpha(C)=\{p \in \mathcal{P} \mid \forall m \in C . m \vDash p\}
$$

An abstract domain

$$
\alpha(C)=\{p \in \mathcal{P} \mid \forall m \in C . m \vDash p\}
$$

Synthesis Session

- A synthesis session:

- Synthesizer state: $S_{i}=S_{i-1} \sqcap A_{i}$
- $q_{i}=\operatorname{Select}\left(S_{i-1}\right)$, or $q_{i} \in \gamma\left(S_{i-1}\right) \cup\{\perp\}$
- If $\mathrm{q}_{\mathrm{i}} \in U^{*} \cup\{\perp\}$, the session terminates

Synthesis user

- The user is aiming for some ideal set of programs $U^{*} \subseteq U$ (where U is the universe of all programs)
- The realizable target set is $M^{*}=M \cap U^{*}$
- Correctness: A user step is correct when

$$
A_{i} \subseteq\left\{p \in \mathcal{P} \mid \exists m \in U^{*} . m \vDash p\right\}
$$

Synthesis user

- The user is aiming for some ideal set of programs $U^{*} \subseteq U$ (where U is the universe of all programs)
- The realizable target set is $M^{*}=M \cap U^{*}$
- Correctness: A user step is correct when

$$
A_{i} \subseteq\left\{p \in \mathcal{P} \mid \exists m \in \underline{U}^{*} . m \vDash p\right\}
$$

\boldsymbol{U}^{*}

$$
\frac{(1 \text { until } n) . \text { fold }((x, z)=>x+z)}{\operatorname{sum}(\text { range }(1, n+1))}
$$

```
var sum=0
for(int i = 1; i <=n; ++i) sum += i
return sum
```


Synthesis user

- The user is aiming for some ideal set of programs $U^{*} \subseteq U$ (where U is the universe of all programs)
- The realizable target set is $M^{*}=M \cap U^{*}$
- Correctness: A user step is correct when

$$
A_{i} \subseteq\left\{p \in \mathcal{P} \mid \exists m \in \underline{U}^{*} . m \vDash p\right\}
$$

(1 until n).fold ($(x, z)=>x+z)$

```
sum(range (1,n+1))
```

```
var sum=0
for(int i = 1; i <=n; ++i) sum += i
return sum
```


Synthesis user

- The user is aiming for some ideal set of programs $U^{*} \subseteq U$ (where U is the universe of all programs)
- The realizable target set is $M^{*}=M \cap U^{*}$
- Correctness: A user step is correct when

$$
A_{i} \subseteq\left\{p \in \mathcal{P} \mid \exists m \in \underline{U}^{*} . m \vDash p\right\}
$$

(1 until n).fold ($(x, z)=>x+z)$

```
var sum=0
for(int i = 1; i <=n; ++i) sum += i
return sum
```


Synthesis user

- The user is aiming for some ideal set of programs $U^{*} \subseteq U$ (where U is the universe of all programs)
- The realizable target set is $M^{*}=M \cap U^{*}$
- Correctness: A user step is correct when

$$
A_{i} \subseteq\left\{p \in \mathcal{P} \mid \exists m \in U^{*} . m \vDash p\right\}
$$

[^0]```
var sum=0
for(int i = 1; i <=n; ++i) sum += i
return sum
```


## Synthesis user

- The user is aiming for some ideal set of programs $U^{*} \subseteq U$ (where $U$ is the universe of all programs)
- The realizable target set is $M^{*}=M \cap U^{*}$
- Correctness: A user step is correct when

$$
A_{i} \subseteq\left\{p \in \mathcal{P} \mid \exists m \in U^{*} . m \vDash p\right\}
$$

[^1]```
var sum=0
for(int i = 1; i <=n; ++i) sum += i
return sum
```

$$
\text { (1 to n).fold }((x, z)=>x+z)+1
$$

Synthesis user

- The user is aiming for some ideal set of programs $U^{*} \subseteq U$ (where U is the universe of all programs)
- The realizable target set is $M^{*}=M \cap U^{*}$
- Correctness: A user step is correct when

$$
A_{i} \subseteq\left\{p \in \mathcal{P} \mid \exists m \in U^{*} . m \vDash p\right\}
$$

[^2]```
var sum=0
for(int i = 1; i <=n; ++i) sum += i
return sum
```

$(1$ to $n)$ fold $((x, z)=>x+z)$

## User guarantees

- In a synthesis session:

1. The user is correct for as long as possible. When not possible, $A_{i}=\perp$
2. The user will always accept a program from $M^{*}$

## Progress

- Adding new predicate doesn't guarantee that the session is progressing
- $S_{n-1} \sqsubset S_{n}$ could still mean that $\gamma\left(S_{n}\right)=\gamma\left(S_{n-1}\right)$
- Synthesizers usually don't check



## Easiest way to make progress



## Easiest way to make progress



- In other words: something that's wrong with the current program
- Rule out at least the current program


## Easiest way to make progress



- In other words: something that's wrong with the current program
- Rule out at least the current program
- Important when $q_{i} \in \gamma\left(S_{i+1}\right) \Rightarrow \operatorname{Select}\left(S_{i+1}\right)=q_{i}$
- Easy to check, but too strong


## A Different Model of Progress

- $A_{i}$ makes weak progress if

$$
\gamma\left(S_{n-1} \sqcap A_{i}\right)=\gamma\left(S_{n}\right) \subsetneq \gamma\left(S_{n-1}\right)
$$

- We can provide positive reinforcement


## A Different Model of Progress

- $A_{i}$ makes weak progress if

$$
\gamma\left(S_{n-1} \sqcap A_{i}\right)=\gamma\left(S_{n}\right) \subsetneq \gamma\left(S_{n-1}\right)
$$

- We can provide positive reinforcement

$$
\text { (1 to n).fold }((x, z)=>x+z)+1
$$

## A Different Model of Progress

- $A_{i}$ makes weak progress if

$$
\gamma\left(S_{n-1} \sqcap A_{i}\right)=\gamma\left(S_{n}\right) \subsetneq \gamma\left(S_{n-1}\right)
$$

- We can provide positive reinforcement

$$
(1 \text { to } n) \text { fold }(x, z)=>x+z)+1
$$

## A Different Model of Progress

- $A_{i}$ makes weak progress if

$$
\gamma\left(S_{n-1} \sqcap A_{i}\right)=\gamma\left(S_{n}\right) \subsetneq \gamma\left(S_{n-1}\right)
$$

- We can provide positive reinforcement

$$
(1 \text { to } n) \text { fold }((x, z)=>x+z)+1
$$

- Harder to check: $S_{i} \nRightarrow A_{i}$
- Once we know there is progress, we know some things about termination (see paper)


## Convergence

- A session converges if $\gamma\left(S_{n}\right) \subseteq M^{*}$
- User correctness means the session ends at state $n$
- Converges successfully: $\emptyset \neq \gamma\left(S_{n}\right) \subseteq M^{*}$



## Core set

- Core set: the set of finite underapproximations of $M^{*}$



## Core set

- Core set: the set of finite underapproximations of $M^{*}$

$$
\mathcal{B}=\left\{\begin{array}{c|c}
B \subseteq \mathcal{P} \left\lvert\, \begin{array}{c}
0 \neq \gamma(B) \subseteq M^{*} \\
\\
\\
|B| \in \mathbb{N}
\end{array}\right.
\end{array}\right\}
$$



## Core set

- Core set: the set of finite underapproximations of $M^{*}$

$$
\mathcal{B}=\left\{\begin{array}{c|c}
B \subseteq \mathcal{P} \left\lvert\, \begin{array}{c}
0 \neq \gamma(B) \subseteq M^{*} \\
\wedge|B| \in \mathbb{N}
\end{array}\right.
\end{array}\right\}
$$



- User intention is realizable if $M^{*} \neq \emptyset$
- $\mathcal{P}$-realizability: can converge under $\mathcal{P}$
$B_{3}$


## Core set

- Core set: the set of finite underapproximations of $M^{*}$

$$
\mathcal{B}=\left\{\begin{array}{c|c}
B \subseteq \mathcal{P} \left\lvert\, \begin{array}{c}
0 \neq \gamma(B) \subseteq M^{*} \\
\\
\\
|B| \in \mathbb{N}
\end{array}\right.
\end{array}\right\}
$$

- User intention is realizable if $M^{*} \neq \varnothing$
- $\mathcal{P}$-realizability: can converge under $\mathcal{P}$

$$
M^{*} \text { is } \mathcal{P} \text {-realizable if } \mathcal{B} \neq \varnothing
$$

## Infeasible point

- A state where

$$
\gamma\left(S_{i}\right) \cap M^{*}=\emptyset
$$

- Select can't succeed, even in best case
- The First Infeasible Point is the first point of failure
- Can we backtrack before an infeasible point?



## Point of inevitable failure

- State $S_{i}$ is an POIF if $\forall B \in \mathcal{B} . \gamma\left(S_{i}\right) \cap \gamma(B)=\emptyset$
- Specifically, $S_{i}$ is an POIF if $\gamma\left(S_{i}\right) \cap M^{*}=\varnothing$



## Point of inevitable failure

- State $S_{i}$ is an POIF if $\forall B \in \mathcal{B} . \gamma\left(S_{i}\right) \cap \gamma(B)=\varnothing$
- Specifically, $S_{i}$ is an POIF if $\gamma\left(S_{i}\right) \cap M^{*}=\emptyset$
- But not necessarily



## Point of inevitable failure

- State $S_{i}$ is an POIF if $\forall B \in \mathcal{B} . \gamma\left(S_{i}\right) \cap \gamma(B)=\varnothing$
- Specifically, $S_{i}$ is an POIF if $\gamma\left(S_{i}\right) \cap M^{*}=\emptyset$
- But not necessarily
- As long as $S_{i}$ is not an POIF we can still converge
- Can we backtrack before an inevitable point of failure?



## Backtracking from failure

Theorem: for any $k \in \mathbb{N}$ there exists a session $\mathcal{S}$ where state $S_{i}$ is an point of inevitable failure and only state $S_{k+i}$ is the first infeasible point.

## Backtracking from failure

Theorem: for any $k \in \mathbb{N}$ there exists a session $\mathcal{S}$ where state $S_{i}$ is an point of inevitable failure and only state $S_{k+i}$ is the first infeasible point.

Essentially: there is no bound on the number of steps to backtrack once failure is apparent.
Proof: by construction

## An unbounded session



## Construction

- Candidate program space $M$ is spanned by:
- if-else
- ==
- lists of ints ([],[1,2], etc.)
- recursive call f
- the input variable i
- cons
- max
- remove
- sort
- reverse


## Construction

- Candidate program space $M$ is spanned by:
- if-else
- ==
- lists of ints ([],[1,2], etc.)
- recursive call f
- the input variable i
- cons
- max


## Example candidate:

if (i==[]) []
else cons (max(i),
f(remove (i, max(i))

- remove
- sort
- reverse


## Construction

- Candidate program space $M$ is spanned by:
- if-else
- ==
- lists of ints ([],[1,2], etc.)
- recursive call f
- the input variable i
- cons
- max
- remove
- sort
- reverse


## Example candidate:

if (i==[]) []
else cons (max(i), f(remove (i, max(i))

## Example candidate:

reverse (sort(i))

## Construction

- Candidate program space $M$ is spanned by:
- if-else
- ==
- lists of ints ([],[1,2], etc.)
- recursive call f
- the input variable i
- cons
- max
- remove
- sort
- reverse
- Available predicates in $\mathcal{P}$ :
- Input-output examples
- exclude (e), for any program element e


## Example candidate:

if (i==[]) []
else cons (max(i),
f(remove (i, max(i))

## Example candidate:

reverse (sort(i))

## Construction

Task: sort a list in descending order.

## Construction

Task: sort a list in descending order.
Input: [], Output: []
Input: [1, 2], Output: [2, 1]

## Construction

Task: sort a list in descending order.
Input: [], Output: []
Input: [1,2], Output: [2,1]
reverse (i)

## Construction

Task: sort a list in descending order.
Input: [], Output: []
Input: [1, 2], Output: [2, 1]
reverse(i)
exclude(reverse)

## Construction

Task: sort a list in descending order.
Input: [], Output: []
Input: [1,2], Output: [2,1]
reverse (i)
exclude(reverse)
Point of Inevitable Failure

## Construction

Task: sort a list in descending order.

## Input: [], Output: []

Input: [1,2], Output: [2,1]
reverse(i)
exclude(reverse)
Point of Inevitable Failure
if (i==[1,2])[2,1]
else i

## Construction

## if (i==[1,2])[2,1] <br> else i

## Construction

## if (i==[1,2])[2,1] else i

Input: [1,3], Output: [3,1]

## Construction

if (i==[1,2])[2,1] else i
Input: [1,3], Output: [3,1]
if (i==[1,2]) [2,1]
else if (i==[1,3]) [3,1]
else i

## Construction

if (i==[1,2])[2,1] else i
Input: [1,3], Output: [3,1]
if (i==[1,2]) [2,1]
else if (i==[1,3]) [3,1]
else i

## Construction

if (i==[1,2])[2,1]
else i
Input: [1,3], Output: [3,1]
if (i==[1,2]) [2,1]
else if (i==[1,3]) [3,1]
else i

> Example candidate:
> if (i==[]) []
> else cons (max(i), $\quad f(r e m o v e(i, \max (i))$

## Construction

if (i==[1,2])[2,1] else i
Input: [1,3], Output: [3,1]
if (i==[1,2]) [2,1]
else if (i==[1,3]) [3,1]
else i

## Construction

## if (i==[1,2])[2,1] else i

Input: [1,3], Output: [3,1]
if (i==[1,2]) [2,1]
else if (i==[1,3]) [3,1]
else i

exclude(==)

## Construction

## if (i==[1,2])[2,1] <br> else i

Input: [1,3], Output: [3,1]
if (i==[1,2]) [2,1]
else if (i==[1,3]) [3,1]
else i

exclude(==)
$\perp$


## Conclusion

- An iterative, interactive model of synthesis
- An abstract domain of predicates
- Progress
- Convergence
- The unboundedness of backtracking
- We hope these results help future synthesizer designers


[^0]:    $M^{*}$
    (1 until $n$ ).fold ( $(x, z)=>x+z)$

    ```
 sum(range (1,n+1))
    ```

[^1]:    $\boldsymbol{M}^{*}$
    (1 until $n$ ).fold ( $(x, z)=>x+z)$

    ```
 sum(range (1,n+1))
    ```

[^2]:    $\boldsymbol{M}^{*}$
    (1 until $n$ ).fold ( $(x, z)=>x+z)$

    ```
 sum(range (1,n+1))
    ```

