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𝑚 ∈ 𝑀 𝑚 (𝑖𝑛𝑝𝑢𝑡) = 𝑜𝑢𝑡𝑝𝑢𝑡

input.takeRight(2)
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Our Goal

• To model user-driven synthesis
• Works in practice but we do not understand its 

limitations

• Properties
• Of the synthesizer

• Of the user

• Guarantees
• Termination (in paper)

• Are “bad sessions” recoverable
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Iterative, interactive synthesis

𝑼∗

𝑺𝒊

𝐴𝑖 ∈ 2𝒫

𝑞𝑖 ∈ 𝑀

Partial specification
Available predicatesIdeal target set

Candidate program
Search space

State
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Select

𝑺𝒊

𝑞𝑖 ∈ 𝑀

?
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• Candidate program is 
selected via some
selection criterion: 
𝑆𝑒𝑙𝑒𝑐𝑡

• 𝑆𝑒𝑙𝑒𝑐𝑡 usually designed 
to return a program from 
𝑈∗ ASAP (in 1-2 
iterations)

• There is little theoretical 
work about the long run
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Synthesis Session

• A synthesis session:

𝒮 = 𝐴0, 𝑞1 𝐴1, 𝑞2 …

• Synthesizer state: 𝑆𝑖 = 𝑆𝑖−1 ⊓ 𝐴𝑖
• 𝑞𝑖 = 𝑆𝑒𝑙𝑒𝑐𝑡 𝑆𝑖−1 , or 𝑞𝑖 ∈ 𝛾(𝑆𝑖−1) ∪ {⊥}

• If qi ∈ 𝑈∗ ∪ {⊥}, the session terminates

Initial specifications

Candidate program

User answer
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Synthesis user

• The user is aiming for some ideal set of programs 
𝑈∗ ⊆ 𝑈 (where 𝑈 is the universe of all programs)

• The realizable target set is 𝑀∗ = 𝑀 ∩ 𝑈∗

• Correctness: A user step is correct when 
𝐴𝑖 ⊆ 𝑝 ∈ 𝒫 ∣ ∃𝑚 ∈ 𝑈∗. 𝑚 ⊨ 𝑝
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User guarantees

• In a synthesis session:
1. The user is correct for as long as possible. 

When not possible, 𝐴𝑖 =⊥

2. The user will always accept a program from 𝑀∗
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Progress

• Adding new predicate doesn’t guarantee that the 
session is progressing

• 𝑆𝑛−1 ⊏ 𝑆𝑛 could still mean that 𝛾 𝑆𝑛 = 𝛾(𝑆𝑛−1)

• Synthesizers usually don’t check

11

𝑴∗

𝜸(𝑺𝟎)𝜸(𝑺𝟏)
𝑆1

𝑆0

𝑆2



Easiest way to make progress
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• Rule out at least the current program
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𝑚

𝐴𝑖 s.t. ∃𝑝 ∈ 𝐴𝑖 . 𝑚 ⊭ 𝑝

• In other words: something that’s wrong with the 
current program

• Rule out at least the current program
• Important when 𝑞𝑖 ∈ 𝛾(𝑆𝑖+1) ⇒ 𝑆𝑒𝑙𝑒𝑐𝑡 𝑆𝑖+1 = 𝑞𝑖
• Easy to check, but too strong



A Different Model of Progress

• 𝐴𝑖 makes weak progress if 
𝛾 𝑆𝑛−1 ⊓ 𝐴𝑖 = 𝛾 𝑆𝑛 ⊊ 𝛾 𝑆𝑛−1

• We can provide positive reinforcement
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• 𝐴𝑖 makes weak progress if 
𝛾 𝑆𝑛−1 ⊓ 𝐴𝑖 = 𝛾 𝑆𝑛 ⊊ 𝛾 𝑆𝑛−1

• We can provide positive reinforcement

• Harder to check: 𝑆𝑖 ⇏ 𝐴𝑖
• Once we know there is progress, we know 

some things about termination (see paper)
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Convergence

• A session converges if 𝛾(𝑆𝑛) ⊆ 𝑀∗

• User correctness means the session ends at state 𝑛

• Converges successfully: ∅ ≠ 𝛾 𝑆𝑛 ⊆ 𝑀∗

14

𝑴∗

𝜸(𝑺𝒏)



Core set

• Core set: the set of finite
underapproximations of 𝑀∗

ℬ = 𝐵 ⊆ 𝒫
0 ≠ 𝛾 𝐵 ⊆ 𝑀∗

∧ 𝐵 ∈ ℕ

𝑼∗

𝑴∗
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𝑩𝟑
𝑀∗ is 𝒫-realizable if ℬ ≠ ∅
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Infeasible point

• A state where 
𝛾 𝑆𝑖 ∩𝑀∗ = ∅

• 𝑆𝑒𝑙𝑒𝑐𝑡 can’t succeed, 
even in best case

• The First Infeasible Point
is the first point of 
failure

• Can we backtrack before 
an infeasible point?
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𝑴∗

𝑩𝟐
𝑩𝟏

𝑩𝟑

𝑺𝒊



Point of inevitable failure
• State 𝑆𝑖 is an POIF if  
∀𝐵 ∈ ℬ. 𝛾 𝑆𝑖 ∩ 𝛾 𝐵 = ∅

• Specifically, 𝑆𝑖 is an POIF if 
𝛾 𝑆𝑖 ∩𝑀∗ = ∅
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• State 𝑆𝑖 is an POIF if  
∀𝐵 ∈ ℬ. 𝛾 𝑆𝑖 ∩ 𝛾 𝐵 = ∅

• Specifically, 𝑆𝑖 is an POIF if 
𝛾 𝑆𝑖 ∩𝑀∗ = ∅

• But not necessarily

• As long as 𝑆𝑖 is not an POIF 
we can still converge

• Can we backtrack before an 
inevitable point of failure?



Backtracking from failure

Theorem: for any 𝑘 ∈ ℕ there exists a 
session 𝒮 where state 𝑆𝑖 is an point of 
inevitable failure and only state 𝑆𝑘+𝑖 is 
the first infeasible point.
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Backtracking from failure

Essentially: there is no bound on the number of steps 
to backtrack once failure is apparent.

Proof: by construction

Theorem: for any 𝑘 ∈ ℕ there exists a 
session 𝒮 where state 𝑆𝑖 is an point of 
inevitable failure and only state 𝑆𝑘+𝑖 is 
the first infeasible point.
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An unbounded session

19

Point of 
inevitable 
failure

1st infeasible 
point

Of length 
any 𝑘 ∈ ℕ

𝛾 𝑆𝑖 ∩𝑀∗ = ∅

∀𝐵 ∈ ℬ. 𝛾 𝐵 ∩ 𝛾(𝑆𝑖) = ∅



Construction

• Candidate program 
space 𝑀 is spanned by:
• if-else
• ==
• lists of ints ([],[1,2], etc.)
• recursive call f
• the input variable i
• cons
• max
• remove
• sort
• reverse
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Example candidate:
reverse(sort(i))

• Available predicates in 𝒫:
• Input-output examples

• 𝑒𝑥𝑐𝑙𝑢𝑑𝑒(𝑒), for any 
program element e



Construction

Task: sort a list in descending order.
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Construction

Input: [], Output: []

Input: [1,2], Output: [2,1]

reverse(i)

Task: sort a list in descending order.

exclude(reverse)

if (i==[1,2])[2,1]

else i

Point of Inevitable Failure
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Construction

if (i==[1,2])[2,1]

else i
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Construction
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Input: [1,3], Output: [3,1]
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else if (i==[1,3]) [3,1]

else i

exclude(==)

⊥

if (i==[1,2])[2,1]

else i

⋮
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Conclusion

• An iterative, interactive model of synthesis

• An abstract domain of predicates

• Progress

• Convergence

• The unboundedness of backtracking

• We hope these results help future synthesizer 
designers
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