Abstraction-Based
Interaction Model for
Synthesis

¥ Hila Peleg, Technion

_~

¥ Shachar Itzhaky, Technion
}%Sharon Shoham, Tel Aviv University

erc The research leading to these results has received funding from the European Union's - Seventh
“#EE T Framework Programme (FP7) under grant agreement n° 615688 — ERC- COG-PRIME.

Programming by Example

Task: find the most frequent bigram in a string.

Lieberman, H. (2000). Programming by example. Communications of the ACM, 43(3), 72-72.

Programming by Example

Task: find the most frequent bigram in a string.

"abdfibfcfdebdfdebdihgfkjfdebd"

U
"bd" r ~.

Lieberman, H. (2000). Programming by example. Communications of the ACM, 43(3), 72-72.

Programming by Example

Task: find the most frequent bigram in a string.

"abdfibfcfdebdfdebdihgfkjfdebd"
[

"bd" .
. . L2y
input.takeRight (2) 0

Lieberman, H. (2000). Programming by example. Communications of the ACM, 43(3), 72-72.

Programming by Example

Task: find the most frequent bigram in a string.
o™ AJ!Zl
. . £
input.takeRight (2) 0

"abdfibfcfdebdfdebdihgfkjfdebd"
[

)

Lieberman, H. (2000). Programming by example. Communications of the ACM, 43(3), 72-72.

Programming by Example

Task: find the most frequent bigram in a string.

"abdfibfcfdebdfdebdihgfkjfdebd"
[

"bd" .
. . &
input.takeRight (2) 0
"abbba"

u ¢
"o add

Lieberman, H. (2000). Programming by example. Communications of the ACM, 43(3), 72-72.

Programming by Example

Task: find the most frequent bigram in a string.

"abdfibfcfdebdfdebdihgfkjfdebd"
U
"bd" .

£
input.takeRight (2) 0

"abbba"
u 9
Al

1A bb 1A

£
input.substring (1, 3) 0,

Lieberman, H. (2000). Programming by example. Communications of the ACM, 43(3), 72-72.

Programming Not Only by Example

Input
U
Output

Peleg, H., Shoham, S., & Yahav, E. (2017). Programming Not Only by Example. ICSE 2018 (Upcoming).

Programming Not Only by Example

{m € M | [m] (input) = output}

Peleg, H., Shoham, S., & Yahav, E. (2017). Programming Not Only by Example. ICSE 2018 (Upcoming).

Programming Not Only by Example

Peleg, H., Shoham, S., & Yahav, E. (2017). Programming Not Only by Example. ICSE 2018 (Upcoming). 3

Programming Not Only by Example

{m e M | [m](input) = output}

input.takeRight (2)

o
:

Exclude programs with takeRight

-~

Peleg, H., Shoham, S., & Yahay, E. (2017). Programming Not Only by Example. ICSE 2018 (Upcoming).

Programming Not Only by Example

{m € M | p(m)}

input.takeRight (2)

o
:

Exclude programs with takeRight

-~

Peleg, H., Shoham, S., & Yahay, E. (2017). Programming Not Only by Example. ICSE 2018 (Upcoming).

Our Goal

* To model user-driven synthesis

* Works in practice but we do not understand its
limitations

* Properties

e Of the synthesizer
e Of the user

* Guarantees
* Termination (in paper)
 Are “bad sessions” recoverable

lterative, interactive synthesis

Partial specification
Ideal target set ‘ Available predicates

‘ Search space

Candidate program State

Select

* Candidate program is
selected via some
selection criterion:
Select

e Select usually designed
to return a program from
U* ASAP (in 1-2
iterations)

* There is little theoretical
work about the long run

An abstract domain

y(4) ={m € M|Vp € A.m E p}

Y 27

Predicates
Programs

a(C) ={p € Plvm e C.m E p}

An abstract domain

y(4) ={m € M|Vp € A.m E p}

§
Ak,

Uit P
Select 2
04
Predicates

Programs

a(C) ={p € Plvm e C.m E p}

An abstract domain

y(4) ={m € M|Vp € A.m E p}

§
Ak,

Select

B Predicates
Programs

a(C) ={p € Plvm e C.m E p}

Synthesis Session

* A synthesis session:

Candidate program

5 = (40,00 (A1,02)

" P User answer
Initial specifications

* Synthesizer state: 5; = S;_1 M 4;
* q; = Select(S;_1),orq; € y(Si—1) U {1}
* If q; € U U {1}, the session terminates

Synthesis user

* The user is aiming for some ideal set of programs
U* € U (where U is the universe of all programs)

* The realizable target setisM* =M N U~

e Correctness: A user step is correct when
A;C{peP|ameU".mE p}

Synthesis user

* The user is aiming for some ideal set of programs
U* € U (where U is the universe of all programs)

* The realizable target setisM* =M N U~

e Correctness: A user step is correct when
Aic{peP|ImelU . mkEp}

a

\

u-_
(1 until n).fold((x,z)=>xtz) | |var sum=0
for(int 1 = 1; 1 <=n; ++1) sum += 1
sum (range (1,n+1)) return sum |

Synthesis user

* The user is aiming for some ideal set of programs
U* € U (where U is the universe of all programs)

* The realizable target setisM* =M N U~

e Correctness: A user step is correct when
A;C{peP|ImelU . mE p}
—ar

(1 until n).fold((x,z)=>x+z) var sum=0

for(int 1 = 1; i <=n; ++i) sum += i
sum (range (1,n+1)) return sum

Synthesis user

* The user is aiming for some ideal set of programs
U* € U (where U is the universe of all programs)

* The realizable target setisM* =M N U~

e Correctness: A user step is correct when
A;C{peP|ImelU . mE p}
—ar

(1 until n).fold((x,z)=>x+z) var sum=0

for(int 1 = 1; i <=n; ++i) sum += i
sum (range (1,n+1)) return sum

Neither is

known to the
synthesizer 5

Synthesis user

* The user is aiming for some ideal set of programs
U* € U (where U is the universe of all programs)

* The realizable target setisM* =M N U~

e Correctness: A user step is correct when
A;c{peP|ImelU".mkpj

(1 until n).fold((x,z)=>x+z) var sum=0

for(int 1 = 1; i <=n; ++i) sum += i
sum (range (1,n+1)) return sum

Synthesis user

* The user is aiming for some ideal set of programs
U* € U (where U is the universe of all programs)

* The realizable target setisM* =M N U~

e Correctness: A user step is correct when
A;c{peP|ImelU".mkpj

(1 until n).fold((x,z)=>x+z) var sum=0

for(int 1 = 1; i <=n; ++i) sum += i
sum (range (1,n+1)) return sum

(1 to n).fold((x,z)=>x+z) + 1

Synthesis user

* The user is aiming for some ideal set of programs
U* € U (where U is the universe of all programs)

* The realizable target setisM* =M N U~

e Correctness: A user step is correct when
A;c{peP|ImelU".mkpj

(1 until n).fold((x,z)=>x+z) var sum=0

for(int 1 = 1; i <=n; ++i) sum += i
sum (range (1,n+1)) return sum

(1 to n)(fold')((x,z)=>x+z) G 1y
v X

User guarantees

* In a synthesis session:

1. The user is correct for as long as possible.
When not possible, 4; =1

2. The user will always accept a program from M™

Progress

* Adding new predicate doesn’t guarantee that the
session is progressing

*S,_1 C S, could still mean that y(S,,) = v(S,,—1)

* Synthesizers usually don’t check
S (SO)

11

Easiest way to make progress

) o

Ai S.t. Elp EAl-.m e (4 '

Easiest way to make progress

) o

Ai S.t. Elp EAl-.m e (4 '

* [n other words: something that’s wrong with the
current program

* Rule out at least the current program

Easiest way to make progress

) o

Ai S.t. Elp e Ai.m e (4

* [n other words: something that’s wrong with the
current program

* Rule out at least the current program
* Important when q; € y(S;41) = Select(S;41) = q;
e Easy to check, but too strong

A Different Model of Progress

* A; makes weak progress if
V(Sn—l [Ai) — V(Sn) G V(Sn—l)
* We can provide positive reinforcement

A Different Model of Progress

* A; makes weak progress if
V(Sn—l [Ai) — V(Sn) G V(Sn—l)
* We can provide positive reinforcement

(1 to n).fold((x,z)=>x+tz) + 1

A Different Model of Progress

* A; makes weak progress if
V(Sn—l [Ai) — V(Sn) G V(Sn—l)
* We can provide positive reinforcement

(1 to n)(foldy (x,z)=>x+tz) + 1
‘/

A Different Model of Progress

* A; makes weak progress if
V(Sn—l [Ai) — V(Sn) G V(Sn—l)
* We can provide positive reinforcement

(1 to n)(foldy (x,z)=>x+tz) + 1
‘/

* Harder to check: S; # A;

* Once we know there is progress, we know
some things about termination (see paper)

Convergence

* A session converges if y(S,,) € M~
e User correctness means the session ends at state n

* Converges successfully: @ # y(S,,)) € M*

14

Core set

* Core set: the set of finite
underapproximations of M*

n ={B gp‘o % y(B) QM*}

A |B| € N

15

Core set

* Core set: the set of finite
underapproximations of M*

n ={B gp‘o % y(B) QM*}

A |B| € N

15

Core set

e Core set: the set of finite
underapproximations of M*

Oiy(B)EM*}
— C
B {B_?‘ A |B| €N

e User intention is realizable if
M*#Q

* P-realizability: can
converge under P

U*
M*

Core set

e Core set: the set of finite U*
underapproximations of M* 7
0+y(B) S M*}
— C B
B {B‘?‘ A|B| €N B, 1

e User intention is realizable if
M* + @
* P-realizability: can
converge under P M™ is P-realizable if B # @

Infeasible point

e A state where
y@SH)NM* =¢

e Select can’t succeed,
even in best case

 The First Infeasible Point
is the first point of
failure

* Can we backtrack before
an infeasible point?

M*

Point of inevitable failure
* State S; is an POIF if
VB € B.y(S;))ny(B) =0

* Specifically, S; is an POIF if
yS)NM* =09

17

Point of inevitable failure
* State S; is an POIF if
VBeEB.yS;)Nny(B) =0

* Specifically, S; is an POIF if
yS)NM =0
* But not necessarily

17

Point of inevitable failure
* State S; is an POIF if
VBeEB.yS;)Nny(B) =0

* Specifically, S; is an POIF if
yS)NM =0
* But not necessarily

* As long as S; is not an POIF
we can still converge

e Can we backtrack before an
inevitable point of failure?

17

Backtracking from failure

Theorem: for any k € N there exists a
session & where state S; is an point of

inevitable failure and only state S, ; is
the first infeasible point.

Backtracking from failure

Theorem: for any k € N there exists a
session & where state S; is an point of
inevitable failure and only state S, ; is
the first infeasible point.

Essentially: there is no bound on the number of steps
to backtrack once failure is apparent.

Proof: by construction

An unbounded session

19

Construction

* Candidate program
space M is spanned by:

e if-else

e lists of ints ([],[1,2], etc.)
e recursive call £

* the input variable i

* cons

* max

* remove

e sort

* reverse

Construction

* Candidate program
space M is spanned by:

e if-else

e lists of ints ([],[1,2], etc.)

e recursive call £ Example candidate:

* the input variable 1 1t (i==[1) []

* CONS else cons (max (1),

* max f (remove (1, max (1))
* remove

* sort

* reverse

Construction

* Candidate program
space M is spanned by:

e if-else

e lists of ints ([],[1,2], etc.)

e recursive call £ Example candidate:

* the input variable i 1f (1==[]) []

* CONS else cons (max (1),

e max f (remove (1, max (1))
* remove _

e sort Example candidate:

. reverse reverse (sort (1))

Construction

* Candidate program
space M is spanned by:

e if-else

e lists of ints ([],[1,2], etc.)
e recursive call £

* the input variable i

* cons

* max

* remove

e sort

* reverse

* Available predicates in P:
* |nput-output examples

* exclude(e), for any
program element e

Example candidate:
if (i==[]) T[]
else cons (max (1),
f (remove (1, max (1))

Example candidate:
reverse (sort (1))

Construction

Task: sort a list in descending order.

Construction

21

Construction

21

Construction

21

Construction

Task: sort a list in descending order.

Input: [], Output: [] .

Input: [1, 2], Output: [2, 1] PN
| £

reverse (1) Q

excl ude(revers e) Point of Inevitable Failure '

Construction

Task: sort a list in descending order.

Input: [], Output: [] .

Input: [1, 2], Output: [2, 1] PN
| £

reverse (1) Q

excl ude(revers e) Point of Inevitable Failure '

1f (1==I[1,2]) [2,1]

Ly
else 1 Q

Construction

22

Construction

22

Construction

22

Construction

22

Construction

Construction

22

Construction

Construction

Conclusion

* An iterative, interactive model of synthesis
* An abstract domain of predicates

* Progress

* Convergence

* The unboundedness of backtracking

* We hope these results help future synthesizer
designers

