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APIs can be complicated
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The JDBC API 

seems complex, 

how do I use it 

properly?



We can get temporal API 
specifications from examples

Translation: find out the sequence 
of methods programmers invoke in 
order to actually do stuff with the 
library
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But which example should I use?
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What if the one we select has a bug?
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Connection default is auto-commit,
you shouldn’t be committing on it

It’s also pointless to use prepared
statements for run-once statements



What if the one we select is missing 
some information?

6

startTransaction?



We have to learn from more examples

Use ALL the 

examples!

Gazillions
of

programs 
and code 
snippets

Find 

canonical

examples

Complete
partial 

examples

Search for code 
usage

API 

behavior 

index

Validate user 

code
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How would we do that?

1. Analyze a single code example

2. Get all the histories in it that use the API

3. Repeat for all other examples (a lot)

4. Create an index by consolidating all the 
resulting histories

5. Use the resulting index for search and 
verification
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Concrete history

public void method(Something x) {

x.f();

x.g();

x.h();

}

x:
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Objects are sometimes related (1)

public void method(Something x) {

x.f();

BaseOfSomething y = x;

y.g();

y.h();

}

x:
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Objects are sometimes related (2)

public void method(Something x) {

x.f();

SomethingElse s = x.createSomethingElse();

s.h();

}

x:
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Dealing with the unknown

public void method1() {

Something x = new Something();

x.f();

transmogrify(x);

x.g();

}
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An unbounded number of histories

public void method(Something x) {

while(?) {

x.f();
}
x.g();

}

X:

X:

X:

X:
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We need an abstraction

• Group all API calls for an object

– Heap abstraction

– Tracking creation chains

• Create an abstract history that’s bounded

• Histories with unknown steps

– Use variable for each unknown 

• What abstraction? DSAs
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Abstract Representation: DSA

A Deterministic 
Symbolic Automaton is 
a tuple (Σ;Q;δ;ι;F;Vars)
• Σ is a finite alphabet
• Q is a finite set of states
• δ is the transition relation, 

𝑄 × (Σ ∪ 𝑉𝑎𝑟𝑠) → 𝑄
• 𝜄 ∈ 𝑄 is the initial state
• 𝐹 ⊆ 𝑄 is the set of final 

states
• Vars is the finite set of 

variables
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Semantics of DSAs: Symbolic Language

• Words over Σ are concrete words

• Words over Σ ∪ 𝑉𝑎𝑟𝑠 are symbolic words
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SL(A) = { a, abxcd, abxcdbxcd,… }

𝑆𝐿 𝐴 = {𝑠𝑤 ∈ Σ ∪ 𝑉𝑎𝑟𝑠 ∗|𝛿 𝜄, 𝑠𝑤 ∈ 𝐹}



Assignment

An assignment σ maps a variable x in context sw1, 
sw2 𝑠𝑤1, 𝑥, 𝑠𝑤2 to a non-empty symbolic language 

𝜎 𝜖, 𝑥, 𝜖 = 𝑑(𝑒𝑦𝑑)∗
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Assignment

An assignment σ maps a variable x in context sw1, 
sw2 𝑠𝑤1, 𝑥, 𝑠𝑤2 to a non-empty symbolic language 

𝜎 𝜖, 𝑥, 𝜖 = 𝑑(𝑒𝑦𝑑)∗
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Assignment
𝑠𝑤1, 𝑠𝑤2 is the context of the assignment

 
𝜎 𝜖, 𝑥, 𝑏 = 𝑑𝑏
𝜎 𝜖, 𝑥, 𝑐 = 𝑒𝑐
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Assignment
𝑠𝑤1, 𝑠𝑤2 is the context of the assignment

 
𝜎 𝜖, 𝑥, 𝑏 = 𝑑𝑏
𝜎 𝜖, 𝑥, 𝑐 = 𝑒𝑐
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Creating an Abstract Domain

• DSA is a natural abstract representation of a 
(potentially unbounded) set of histories 

• We need a partial order over DSAs

• We want to capture ordering along two axes
– Precision

– Partialness

• Other operations for applications:
– Consolidation

– Query matching
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Order Between DSAs

• The most natural way to define order between 
automata is language inclusion

• This won’t work for symbolic automata:

22



Order Between DSAs

• The most natural way to define order between 
automata is language inclusion

• This won’t work for symbolic automata:
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{𝑥𝑐} {𝑎𝑐, 𝑏𝑐}



Partialness

• A word is less partial (or more complete) than 
another if it represents a more concrete 
scenario
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• Formally: 𝑤1 is more partial than 𝑤2 if for 
each assignment 𝜎2 to 𝑤2 there is an 
assignment 𝜎1 to 𝑤1 s.t. 𝜎1 𝑤1 = 𝜎2(𝑤2)



Partialness

• A word is less partial (or more complete) than 
another if it represents a more concrete 
scenario
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• Formally: 𝑤1 is more partial than 𝑤2 if for 
each assignment 𝜎2 to 𝑤2 there is an 
assignment 𝜎1 to 𝑤1 s.t. 𝜎1 𝑤1 = 𝜎2(𝑤2)

Empty assignment



Partialness

• A word is less partial (or more complete) than 
another if it represents a more concrete 
scenario
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• Formally: 𝑤1 is more partial than 𝑤2 if for 
each assignment 𝜎2 to 𝑤2 there is an 
assignment 𝜎1 to 𝑤1 s.t. 𝜎1 𝑤1 = 𝜎2(𝑤2)

𝜎 𝑥 = 𝑑



Partial Order

• We define the order over DSAs to capture 
both axes:

– Precision: the natural concept of language 
inclusion

– Partialness: of the individual words

• Intuitively: a DSA is smaller if it is more precise 
and more partial

• Precision is the “classic” upwards direction of 
a lattice
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Precision vs. Partialness
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Precision vs. Partialness
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The less precise you are, the 
more behaviors you describe



Precision vs. Partialness

And the more partial you are, 
the more behaviors you 
describe…
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The less precise you are, the 
more behaviors you describe



The domain’s ≤

𝐴1 ≤ 𝐴2 if for every concrete assignment 𝜎2 of 
𝐴2 there exists a concrete assignment 𝜎1 of 𝐴1

for which 𝜎1(𝑆𝐿 𝐴1 ) ⊆ 𝜎2(𝑆𝐿 𝐴2 )
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The domain’s ≤

𝐴1 ≤ 𝐴2 if for every concrete assignment 𝜎2 of 
𝐴2 there exists a concrete assignment 𝜎1 of 𝐴1

for which 𝜎1(𝑆𝐿 𝐴1 ) ⊆ 𝜎2(𝑆𝐿 𝐴2 )
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𝜎 𝑥 = 𝑎, so 𝑎𝑐 ⊆ {𝑎𝑐, 𝑏}



Calculating Inclusion via Simulation

• Adapting the natural notion of simulation in DFAs 
to DSAs: symbolic simulation

– Find pairs of one state from 𝐴1 and a set of states 
from 𝐴2 that are a witness to structural inclusion

– Collect possible candidates using outgoing transitions

• DFA simulation already captures the notion of 
precision

• DSA simulation adds the notion of partialness

– Symbols can “swallow” parts of the other DSA
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Simulation Example
Simulation: (0,{0}),
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Simulation Example
Simulation: (0,{0}),

(1,{1}),
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Simulation Example
Simulation: (0,{0}),

(1,{1}),

(2,{2}),
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Simulation Example
Simulation: (0,{0}),

(1,{1}),

(2,{2}),

(3,{2,3,4,5,6}),
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Simulation Example
Simulation: (0,{0}),

(1,{1}),

(2,{2}),

(3,{2,3,4,5,6}),

(4,{4}),
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Simulation Example
Simulation: (0,{0}),

(1,{1}),

(2,{2}),

(3,{2,3,4,5,6}),

(4,{4}),
(1,{5}),
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Simulation Example
Simulation: (0,{0}),

(1,{1}),

(2,{2}),

(3,{2,3,4,5,6}),

(4,{4}),
(1,{5}),

(2,{6}),
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Simulation Example
Simulation: (0,{0}),

(1,{1}),

(2,{2}),

(3,{2,3,4,5,6}),

(4,{4}),
(1,{5}),

(2,{6}),
(3,{3,4,5,6})
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≤ is a Preorder

• ≤ is transitive and reflexive, but it is not 
antisymmetric:

• Example:

• But to have a lattice, we need a partial order
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The DSA/≡ Domain

• If 𝐴1 ≤ 𝐴2 and 𝐴2 ≤ 𝐴1, we say 𝐴1 ≡ 𝐴2

• So, instead of looking at the automata as our 
domain, we look at the equivalence classes 
created by  ≡.

• For DSA/≡, ≤ is a partial order
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Join in DSA/≡

• In this domain we can now define join:

• Create the union (like DFA union) of 𝐴1 and 
𝐴2.

• (𝐴1 ⊔ 𝐴2) is a representative of the 
equivalence class for the least upper bound of 
𝐴1 and 𝐴2.

• Conclusion: (DSA/≡,⊑) is a join semi-lattice

44



Computing Join

• When we compute join in DSA/≡ we start 
with a union operation

• But we would like to select a most complete
representative from the resulting equivalence 
class

• That means we would like to throw out 
“duplicate” (equivalent or subsumed) words

• We call this consolidation
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Consolidation: an example

We’d like to go from this: To this:
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Answering Queries

• Now we have a database representing our API

• And we would like to run queries like “what is 
the correct usage around e?”
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To answer a query

• This means taking a query Q:

• And look for an assignment 𝜎 that would 
make 𝜎(𝑆𝐿 𝑄 ) ⊆ 𝑆𝐿(𝐴)

• In our case: 𝜎 𝑥 = 𝑎 and 𝜎 𝑦 = 𝑐

• This process is called unknown elimination
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Unknown Elimination

• If we have an 𝐴1 that is symbolically included 
in 𝐴2 we can say that the concrete parts of 𝐴1

exist in 𝐴2.

• The partial parts of 𝐴1 match up to some part 
(not necessarily concrete) of 𝐴2.

• We already have the simulation matching up 
the concrete parts, we can use its result to 
match something up to the symbolic parts
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UE with contexts

• An assignment can have context, both 
incoming and outgoing such as (𝜖, 𝑥, 𝑏) ↦ 𝑎

• This means that for each variable, we 
compute from the simulation all its incoming 
and outgoing contexts 

• The assignment is filled for each variable with 
the contexts and the corresponding part of 𝐴2
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Putting It All Together: An Analysis

• Here’s how we would perform an analysis of 
an API using everything we’ve got:

– Take a bunch of programs or program snippets

– Mine each one for the usage of the API

– Join them to create the database

– Use the database and unknown elimination to 
answer queries
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A bunch of program snippets
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void foo() {

Socket s = new Socket();

configure(s);

s.connect();

s.send(someBuffer);

s.close();

}

void bar(Socket s) 

{

while (s.canRead())

{

s.read();

}

}

void zoo(Socket s, Buffer b) 

{

s.send(b);

s.close();

}

Program A Program B



Mine each one for API usage

A1

B1

B2
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Join them to create a database

• First thing’s first: 𝐵1 ≤ 𝐴1

• So 𝐴1 ⊔ 𝐵1 = 𝐴1

• Which leaves us with 𝐴1 ⊔ 𝐵2:
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Use unknown elimination to answer 
queries

• We have our database!
– We can give weights to transitions to weed out 

improbable or incorrect usage examples

• Now we can create queries, like 𝑥 ⋅ 𝑟𝑒𝑎𝑑 ⋅ 𝑦
which asks what to do around Socket.read

• Unknown elimination will find the assignment 
𝜎 𝑥 = 𝑧 ⋅ 𝑐𝑎𝑛𝑅𝑒𝑎𝑑

𝜎 𝑦 = 𝑐𝑎𝑛𝑅𝑒𝑎𝑑 ⋅ 𝑤
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PRIME

• PRIME implements this analysis

• For Java, in Java

– Uses Soot to analyze examples

– Consolidates similar histories

– Provides a comfy visual presentation

• Can be found at 
priming.sourceforge.net
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Benchmarks

For presentation completion and code search:
• Apache Commons CLI
• Apache Commons Net
• Apache Ant
• Eclipse JDT
• Eclipse GEF
• Eclipse UI
• JDBC
• WebDriver

For verification, analyzed internal Google codebase 
snippets using WebDriver
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Code search - simple queries
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Where to next?

• Formalizing probabilistic symbolic automata 
PDSA

• Heuristic methods

• More explicit handling of code elements:

– Conditional statements

– Error handling
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