
Symbolic Automata
for Static Specification Mining

Alon Mishne
Hila Peleg

Sharon Shoham
Eran Yahav

Hongseok Yang

1

(Artwork by Allie Brosh of Hyperbole and a Half)

APIs can be complicated

2

The JDBC API

seems complex,

how do I use it

properly?

We can get temporal API
specifications from examples

Translation: find out the sequence
of methods programmers invoke in
order to actually do stuff with the
library

3

But which example should I use?

4

What if the one we select has a bug?

5

Connection default is auto-commit,
you shouldn’t be committing on it

It’s also pointless to use prepared
statements for run-once statements

What if the one we select is missing
some information?

6

startTransaction?

We have to learn from more examples

Use ALL the

examples!

Gazillions
of

programs
and code
snippets

Find

canonical

examples

Complete
partial

examples

Search for code
usage

API

behavior

index

Validate user

code

7

How would we do that?

1. Analyze a single code example

2. Get all the histories in it that use the API

3. Repeat for all other examples (a lot)

4. Create an index by consolidating all the
resulting histories

5. Use the resulting index for search and
verification

8

Concrete history

public void method(Something x) {

x.f();

x.g();

x.h();

}

x:

9

Objects are sometimes related (1)

public void method(Something x) {

x.f();

BaseOfSomething y = x;

y.g();

y.h();

}

x:

10

Objects are sometimes related (2)

public void method(Something x) {

x.f();

SomethingElse s = x.createSomethingElse();

s.h();

}

x:

11

Dealing with the unknown

public void method1() {

Something x = new Something();

x.f();

transmogrify(x);

x.g();

}

12

An unbounded number of histories

public void method(Something x) {

while(?) {

x.f();
}
x.g();

}

X:

X:

X:

X:

13

We need an abstraction

• Group all API calls for an object

– Heap abstraction

– Tracking creation chains

• Create an abstract history that’s bounded

• Histories with unknown steps

– Use variable for each unknown

• What abstraction? DSAs

14

Abstract Representation: DSA

A Deterministic
Symbolic Automaton is
a tuple (Σ;Q;δ;ι;F;Vars)
• Σ is a finite alphabet
• Q is a finite set of states
• δ is the transition relation,

𝑄 × (Σ ∪ 𝑉𝑎𝑟𝑠) → 𝑄
• 𝜄 ∈ 𝑄 is the initial state
• 𝐹 ⊆ 𝑄 is the set of final

states
• Vars is the finite set of

variables

15

Semantics of DSAs: Symbolic Language

• Words over Σ are concrete words

• Words over Σ ∪ 𝑉𝑎𝑟𝑠 are symbolic words

16

SL(A) = { a, abxcd, abxcdbxcd,… }

𝑆𝐿 𝐴 = {𝑠𝑤 ∈ Σ ∪ 𝑉𝑎𝑟𝑠 ∗|𝛿 𝜄, 𝑠𝑤 ∈ 𝐹}

Assignment

An assignment σ maps a variable x in context sw1,
sw2 𝑠𝑤1, 𝑥, 𝑠𝑤2 to a non-empty symbolic language

𝜎 𝜖, 𝑥, 𝜖 = 𝑑(𝑒𝑦𝑑)∗

17

Assignment

An assignment σ maps a variable x in context sw1,
sw2 𝑠𝑤1, 𝑥, 𝑠𝑤2 to a non-empty symbolic language

𝜎 𝜖, 𝑥, 𝜖 = 𝑑(𝑒𝑦𝑑)∗

18

Assignment
𝑠𝑤1, 𝑠𝑤2 is the context of the assignment

𝜎 𝜖, 𝑥, 𝑏 = 𝑑𝑏
𝜎 𝜖, 𝑥, 𝑐 = 𝑒𝑐

19

Assignment
𝑠𝑤1, 𝑠𝑤2 is the context of the assignment

𝜎 𝜖, 𝑥, 𝑏 = 𝑑𝑏
𝜎 𝜖, 𝑥, 𝑐 = 𝑒𝑐

20

Creating an Abstract Domain

• DSA is a natural abstract representation of a
(potentially unbounded) set of histories

• We need a partial order over DSAs

• We want to capture ordering along two axes
– Precision

– Partialness

• Other operations for applications:
– Consolidation

– Query matching

21

Order Between DSAs

• The most natural way to define order between
automata is language inclusion

• This won’t work for symbolic automata:

22

Order Between DSAs

• The most natural way to define order between
automata is language inclusion

• This won’t work for symbolic automata:

23

{𝑥𝑐} {𝑎𝑐, 𝑏𝑐}

Partialness

• A word is less partial (or more complete) than
another if it represents a more concrete
scenario

24

• Formally: 𝑤1 is more partial than 𝑤2 if for
each assignment 𝜎2 to 𝑤2 there is an
assignment 𝜎1 to 𝑤1 s.t. 𝜎1 𝑤1 = 𝜎2(𝑤2)

Partialness

• A word is less partial (or more complete) than
another if it represents a more concrete
scenario

25

• Formally: 𝑤1 is more partial than 𝑤2 if for
each assignment 𝜎2 to 𝑤2 there is an
assignment 𝜎1 to 𝑤1 s.t. 𝜎1 𝑤1 = 𝜎2(𝑤2)

Empty assignment

Partialness

• A word is less partial (or more complete) than
another if it represents a more concrete
scenario

26

• Formally: 𝑤1 is more partial than 𝑤2 if for
each assignment 𝜎2 to 𝑤2 there is an
assignment 𝜎1 to 𝑤1 s.t. 𝜎1 𝑤1 = 𝜎2(𝑤2)

𝜎 𝑥 = 𝑑

Partial Order

• We define the order over DSAs to capture
both axes:

– Precision: the natural concept of language
inclusion

– Partialness: of the individual words

• Intuitively: a DSA is smaller if it is more precise
and more partial

• Precision is the “classic” upwards direction of
a lattice

27

Precision vs. Partialness

28

Precision vs. Partialness

29

The less precise you are, the
more behaviors you describe

Precision vs. Partialness

And the more partial you are,
the more behaviors you
describe…

30

The less precise you are, the
more behaviors you describe

The domain’s ≤

𝐴1 ≤ 𝐴2 if for every concrete assignment 𝜎2 of
𝐴2 there exists a concrete assignment 𝜎1 of 𝐴1

for which 𝜎1(𝑆𝐿 𝐴1) ⊆ 𝜎2(𝑆𝐿 𝐴2)

31

The domain’s ≤

𝐴1 ≤ 𝐴2 if for every concrete assignment 𝜎2 of
𝐴2 there exists a concrete assignment 𝜎1 of 𝐴1

for which 𝜎1(𝑆𝐿 𝐴1) ⊆ 𝜎2(𝑆𝐿 𝐴2)

32

𝜎 𝑥 = 𝑎, so 𝑎𝑐 ⊆ {𝑎𝑐, 𝑏}

Calculating Inclusion via Simulation

• Adapting the natural notion of simulation in DFAs
to DSAs: symbolic simulation

– Find pairs of one state from 𝐴1 and a set of states
from 𝐴2 that are a witness to structural inclusion

– Collect possible candidates using outgoing transitions

• DFA simulation already captures the notion of
precision

• DSA simulation adds the notion of partialness

– Symbols can “swallow” parts of the other DSA

33

Simulation Example
Simulation: (0,{0}),

34

Simulation Example
Simulation: (0,{0}),

(1,{1}),

35

Simulation Example
Simulation: (0,{0}),

(1,{1}),

(2,{2}),

36

Simulation Example
Simulation: (0,{0}),

(1,{1}),

(2,{2}),

(3,{2,3,4,5,6}),

37

Simulation Example
Simulation: (0,{0}),

(1,{1}),

(2,{2}),

(3,{2,3,4,5,6}),

(4,{4}),

38

Simulation Example
Simulation: (0,{0}),

(1,{1}),

(2,{2}),

(3,{2,3,4,5,6}),

(4,{4}),
(1,{5}),

39

Simulation Example
Simulation: (0,{0}),

(1,{1}),

(2,{2}),

(3,{2,3,4,5,6}),

(4,{4}),
(1,{5}),

(2,{6}),

40

Simulation Example
Simulation: (0,{0}),

(1,{1}),

(2,{2}),

(3,{2,3,4,5,6}),

(4,{4}),
(1,{5}),

(2,{6}),
(3,{3,4,5,6})

41

≤ is a Preorder

• ≤ is transitive and reflexive, but it is not
antisymmetric:

• Example:

• But to have a lattice, we need a partial order

42

The DSA/≡ Domain

• If 𝐴1 ≤ 𝐴2 and 𝐴2 ≤ 𝐴1, we say 𝐴1 ≡ 𝐴2

• So, instead of looking at the automata as our
domain, we look at the equivalence classes
created by ≡.

• For DSA/≡, ≤ is a partial order

43

Join in DSA/≡

• In this domain we can now define join:

• Create the union (like DFA union) of 𝐴1 and
𝐴2.

• (𝐴1 ⊔ 𝐴2) is a representative of the
equivalence class for the least upper bound of
𝐴1 and 𝐴2.

• Conclusion: (DSA/≡,⊑) is a join semi-lattice

44

Computing Join

• When we compute join in DSA/≡ we start
with a union operation

• But we would like to select a most complete
representative from the resulting equivalence
class

• That means we would like to throw out
“duplicate” (equivalent or subsumed) words

• We call this consolidation

45

Consolidation: an example

We’d like to go from this: To this:

46

Answering Queries

• Now we have a database representing our API

• And we would like to run queries like “what is
the correct usage around e?”

47

To answer a query

• This means taking a query Q:

• And look for an assignment 𝜎 that would
make 𝜎(𝑆𝐿 𝑄) ⊆ 𝑆𝐿(𝐴)

• In our case: 𝜎 𝑥 = 𝑎 and 𝜎 𝑦 = 𝑐

• This process is called unknown elimination

48

Unknown Elimination

• If we have an 𝐴1 that is symbolically included
in 𝐴2 we can say that the concrete parts of 𝐴1

exist in 𝐴2.

• The partial parts of 𝐴1 match up to some part
(not necessarily concrete) of 𝐴2.

• We already have the simulation matching up
the concrete parts, we can use its result to
match something up to the symbolic parts

49

UE with contexts

• An assignment can have context, both
incoming and outgoing such as (𝜖, 𝑥, 𝑏) ↦ 𝑎

• This means that for each variable, we
compute from the simulation all its incoming
and outgoing contexts

• The assignment is filled for each variable with
the contexts and the corresponding part of 𝐴2

50

Putting It All Together: An Analysis

• Here’s how we would perform an analysis of
an API using everything we’ve got:

– Take a bunch of programs or program snippets

– Mine each one for the usage of the API

– Join them to create the database

– Use the database and unknown elimination to
answer queries

51

A bunch of program snippets

52

void foo() {

Socket s = new Socket();

configure(s);

s.connect();

s.send(someBuffer);

s.close();

}

void bar(Socket s)

{

while (s.canRead())

{

s.read();

}

}

void zoo(Socket s, Buffer b)

{

s.send(b);

s.close();

}

Program A Program B

Mine each one for API usage

A1

B1

B2

53

Join them to create a database

• First thing’s first: 𝐵1 ≤ 𝐴1

• So 𝐴1 ⊔ 𝐵1 = 𝐴1

• Which leaves us with 𝐴1 ⊔ 𝐵2:

54

Use unknown elimination to answer
queries

• We have our database!
– We can give weights to transitions to weed out

improbable or incorrect usage examples

• Now we can create queries, like 𝑥 ⋅ 𝑟𝑒𝑎𝑑 ⋅ 𝑦
which asks what to do around Socket.read

• Unknown elimination will find the assignment
𝜎 𝑥 = 𝑧 ⋅ 𝑐𝑎𝑛𝑅𝑒𝑎𝑑

𝜎 𝑦 = 𝑐𝑎𝑛𝑅𝑒𝑎𝑑 ⋅ 𝑤
55

PRIME

• PRIME implements this analysis

• For Java, in Java

– Uses Soot to analyze examples

– Consolidates similar histories

– Provides a comfy visual presentation

• Can be found at
priming.sourceforge.net

56

Benchmarks

For presentation completion and code search:
• Apache Commons CLI
• Apache Commons Net
• Apache Ant
• Eclipse JDT
• Eclipse GEF
• Eclipse UI
• JDBC
• WebDriver

For verification, analyzed internal Google codebase
snippets using WebDriver

57

Code search - simple queries

58

Where to next?

• Formalizing probabilistic symbolic automata
PDSA

• Heuristic methods

• More explicit handling of code elements:

– Conditional statements

– Error handling

59

60

