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Abstract Analysis of massive codebases (“big code”) presents an opportunity for
drawing insights about programming practice and enabling code reuse. One of the
main challenges in analyzing big code is finding a representation that captures suffi-
cient semantic information, can be constructed efficiently, and is amenable to mean-
ingful comparison operations. We present a formal framework for representing code
in large codebases. In our framework, the semantic descriptor for each code snip-
pet is a partial temporal specification that captures the sequences of method invo-
cations on an API. The main idea is to represent partial temporal specifications as
symbolic automata—automata where transitions may be labeled by variables, and a
variable can be substituted by a letter, a word, or a regular language. Using symbolic
automata, we construct an abstract domain for static analysis of big code, captur-
ing both the partialness of a specification and the precision of a specification. We
show interesting relationships between lattice operations of this domain and common
operators for manipulating partial temporal specifications, such as building a more
informative specification by consolidating two partial specifications, and comparing
partial temporal specifications.
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1 Introduction

Analysis of massive codebases (“big code”) presents an opportunity for drawing in-
sights about programming practice and enabling code reuse. One of the main chal-
lenges in analyzing big code is finding a representation that captures sufficient se-
mantic information, can be constructed efficiently, and is amenable to meaningful
comparison operations.

In this paper, we present a formal framework for representing big code—a large
number of partial programs. The main idea is to extract temporal specifications from
code. To analyze big code, it is critical to allow analysis of code snippets, i.e., code
fragments with unknown parts. A natural approach for capturing gaps in the snippets
is to use gaps in the specification. For example, when the code contains an invocation
of an unknown method, this approach reflects this fact in the extracted specification
as well (we elaborate on this point later). These partial specifications serve as a basis
for a semantic index of the code snippets. Such partial specifications can be used to
construct a probabilistic model of the observed behaviors (similar to the PFSA used
in [4,16] or the language model of [22]).

Technically, we represent partial temporal specifications as symbolic automata,
where transitions may be labeled by variables representing unknown information.
Using symbolic automata, we present an abstract domain for representing big code,
and show interesting relationships between the partialness and the precision of a
specification. In this paper, we focus on representation, and operations over symbolic
automata, and do not address the probabilistic aspects of the problem.

Representing Partial Specifications using Symbolic Automata We focus on gener-
alized typestate specifications [24,16]. Such specifications capture legal sequences
of method invocations on a given API, and are usually expressed as finite-state au-
tomata where a state represents an internal state of the underlying API, and transitions
correspond to API method invocations.

Our symbolic automaton is conceived in order to represent partial information in
specifications. It is a finite-state machine where transitions may be labeled by vari-
ables and a variable can be substituted by a letter, a word, or a regular language in
a context sensitive manner—when a variable appears in multiple strings accepted by
the state machine, it can be replaced by different words in all these strings.

An Abstract Domain for Representing Partial Specifications One challenge for form-
ing an abstract domain with symbolic automata is to find appropriate operations that
capture the subtle interplay between the partialness and the precision of a specifica-
tion. Let us explain this challenge using a preorder over symbolic automata.

When considering non-symbolic automata, we typically use the notion of lan-
guage inclusion to model “precision”—we can say that an automatonA1 overapprox-
imates an automaton A2 when its language includes that of A2. However, this stan-
dard approach is not sufficient for symbolic automata, because the use of variables
introduces partialness as another dimension for relating the (symbolic) automata. In-
tuitively, in a preorder over symbolic automata, we would like to capture the notion of
a symbolic automaton A1 being more complete than a symbolic automaton A2 when
A1 has fewer variables that represent unknown information. In Section 4, we describe
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an interesting interplay between precision and partialness, and define a preorder be-
tween symbolic automata, which we later use as a basis for an abstract domain of
symbolic automata.
Consolidating Partial Specifications After mining a large number of partial specifi-
cations from code snippets, it is desirable to combine consistent partial information
to yield consolidated temporal specifications. This leads to the question of combining
consistent symbolic automata. In Section 7, we show how the join operation of our
abstract domain leads to an operator for consolidating partial specifications.
Completion of Partial Specifications Having constructed consolidated specifications,
we can use symbolic automata as queries for code completion and search. Treating
one symbolic automaton as a query being matched against a database (index) of con-
solidated specifications, we show how to use simulation over symbolic automata to
find automata that match the query (Section 5), and how to use unknown elimination
to find completions of the query automaton (Section 6).
Main Contributions The contributions of this paper are as follows:

– We present a formal framework for the analysis and representation of large scale
codebases. The idea is to provide a representation that captures rich semantic in-
formation but can be still constructed efficiently and enable comparison, indexing,
and other common operations (e.g., completion) of code.

– A central aspect of analyzing big code is the partialness of the code snippets
being analyzed. To capture this aspect, we formally define the notion of partial
temporal specification based on a new notion of symbolic automata.

– We explore relationships between partial specifications along two dimensions:
(i) precision of symbolic automata, a notion that roughly corresponds to con-
tainment of non-symbolic automata; and (ii) partialness of symbolic automata,
a notion that roughly corresponds to an automata having fewer variables, which
represent unknown information.

– We present an abstract domain of symbolic automata where operations of the
domain correspond to key operators for manipulating partial temporal specifica-
tions.

– We define the operations required for algorithms for consolidating two partial
specifications expressed in terms of our symbolic automata, for comparing them,
and for completing certain partial parts of such specifications.

1.1 Related Work

Semantic Representations of Code There has been a lot of work on semantic repre-
sentations of code for detecting similarities [11,5,13] and for semantic code search [16].
Using program dependence graphs was shown effective in comparing procedures [12].
Our approach instead focuses on API calls and on handling partial information. Re-
cently, David and Yahav presented a technique for measuring similarity between bi-
naries using tracelets [8]. Their tracelets are (partial) sequences of instructions, but
can be extended to be tracelets of function calls, similar to the linear case of our par-
tial automata. Raychev et al. [22] present an elegant and efficient semantic represen-
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tation based on sequences of calls including call parameters. Their representation is
practical and efficient, and generalizes our symbolic automata by including method
parameters. However, it uses explicit a priori bounds on the number and length of
tracked sequences, and loses the soundness guarantee as a result. They also present
a code completion technique that is based on statistical language models. Other se-
mantic notions of code similarity focus on integer programs [18,19]. In contrast, we
focus on programs using library APIs.

Specification Mining Static specification mining techniques (e.g., [23,16,3,27]) have
emerged as a way to obtain a succinct description of usage scenarios when working
with a library. However, although they demonstrated great practical value, these tech-
niques do not address many interesting and challenging technical questions. In par-
ticular, they do not address the question of analyzing a large number of code snippets,
where each snippet is (potentially) a partial program.

Mishne et al. [16] present a practical framework for static specification mining
and query matching based on automata. Their framework imposes restrictions on the
structure of automata and could be viewed as a special case of the formal framework
introduced in this paper. In contrast to their informal treatment, this paper presents
the notion of symbolic automata with an appropriate abstract domain. Shoham et
al. [23] use a whole-program analysis to statically analyze clients using a library.
Their approach is not applicable in the setting of partial programs and partial speci-
fication since they rely on the ability to analyze the complete program for complete
alias analysis and for type information.

Many static works on specification mining learn specifications consisting of pairs
of events 〈a, b〉, where a and b are method calls, and do not consider larger automata;
Weimer and Necula [26] use a lightweight static analysis to infer such simple speci-
fications from a given codebase. Wasylkowski et al. [25] use an intraprocedural static
analysis to automatically mine object usage patterns and identify usage anomalies.
Their approach is based on identifying usage patterns, in the restricted form of pairs
of events, reflecting the order in which events should be used. Gruska et al. [10] con-
siders limited specifications that are only pairs of events. The work [2] also mines
pairs of events in an attempt to mine a partial order between events.

Monperrus et al. [17] attempt to identify missing method calls when using an API
by mining a codebase. Their approach deals with identical histories minus k method
calls, where histories are modeled as (unordered) sets of method calls. Unlike our
approach, it cannot handle incomplete programs, method call sequences where the
order is important, and histories that exhibit branching behavior

Many dynamic specification mining approaches also extract various forms of tem-
poral specifications (e.g. [6,4,14,27,29,7,15]). Unlike static analysis of partial code
snippets, dynamic approaches do not need to handle unknown sequences of events,
which are a key ingredient in our approach. On the other hand, because our focus
on this paper is on analysis of code snippets, employing dynamic analysis would be
extremely challenging.

Word Equations Plandowski [21] solves word equations, which define equality con-
ditions on strings with variable portions. Ganesh et al. [9] extend this work with
quantifiers and additional predicates (such as length constraints on the assignment
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1 void process(File f) {
2 f.open();
3 doSomething(f);
4 f.close();
5 }

30 1open 2X close

(a) (b)

Fig. 1 (a) Simple code snippet using File. The methods open and close are API methods, and the
method doSomething is unknown. (b) Symbolic automaton mined from this snippet. The transition
corresponding to doSomething is represented using the variable X. Transitions corresponding to API
methods are labeled with method name.

size). Solving such equations can be thought of as performing unknown elimination
on symbolic words. In comparison to our symbolic automata, word equations use
variables to represent unknown parts of words rather than automata. Unlike our au-
tomata, they cannot capture a branching behavior. In addition, while word equations
allow all predicate arguments to have symbolic components, the equation is solved by
a completely concrete assignment, disallowing the concept of assigning a symbolic
language. More importantly, the assignments considered are context-free. They map
variables to words, making the set of solutions define a relation over the set of words.
In contrast, in our work assignments are context-sensitive. Namely, the same variable
can be assigned different words (or languages) depending on the word that it appears
in. As a result, in our case a set of assignments (solutions) does not represent a simple
relation on words. Instead, it defines a set of languages, each of which results from
one assignment.

2 Overview

We start with an informal overview of our approach by using a simple File example.

2.1 Illustrative Example

Consider the example snippet of Fig. 1(a). We would like to extract a temporal speci-
fication that describes how this snippet uses the File component. The snippet invokes
open and then an unknown method doSomething(f) the code of which is not avail-
able as part of the snippet. Finally, it calls close on the component. Analyzing this
snippet using our approach yields the partial specification of Fig. 1(b). Technically,
this is a symbolic automaton, where transitions corresponding to API methods are
labeled with method name, and the transition corresponding to the unknown method
doSomething is labeled with a variable X. The use of a variable indicates that some
operations may have been invoked on the File component between open and close,
but that this operation or sequence of operations is unknown.

Now consider the specifications of Fig. 2, obtained as the result of analyzing
similar fragments using the File API. Both of these specifications are more complete
than the specification of Fig. 1(b). In fact, both of these automata do not contain
variables, and they represent non-partial temporal specifications. These three separate



6 Hila Peleg et al.

40 1open 2canRead 3read close 30 1open 2write close

(a) (b)

Fig. 2 Automata mined from programs using File to (a) read after canRead check; (b) write.
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Fig. 3 (a) Automaton resulting from combining all known specifications of the File API, and (b) the
File API specifications after partial paths have been subsumed by more concrete ones.

30 1X 2read Y X 7→ open,canRead
Y 7→ close

(a) (b)

Fig. 4 (a) Symbolic automaton representing the query for the behavior around the method read and (b)
the assignment to its symbolic transitions which answers the query.

specifications come from three pieces of code, but all contribute to our knowledge of
how the File API is used. As such, we would like to be able to compare them to each
other and to combine them, and in the process to eliminate as many of the unknowns
as possible using other, more complete examples.

Our first step is to consolidate the specifications into a more comprehensive spec-
ification, describing as much of the API as possible, while losing no behavior repre-
sented by the original specifications.

Next, we would like to eliminate unknown operations based on the extra infor-
mation that the new temporal specification now contains with regard to the full API.
For instance, where in Fig. 1 we had no knowledge of what might happen between
open and close, the specification in Fig. 3(a) suggests it might be either canRead and
read, or write. Thus, the symbolic placeholder for the unknown operation is now
no longer needed, and the path leading through X becomes redundant (as shown in
Fig. 3(b)).

We may now note that all three original specifications are still included in the
specification in Fig. 3(b), even after the unknown operation was removed; the con-
crete paths are fully there, whereas the path with the unknown operation is repre-
sented by both the remaining paths.

The ability to find the inclusion of one specification with unknowns within an-
other is useful for performing queries. A user may wish to use the File object in
order to read, but be unfamiliar with it. He can query the specification, marking any
portion he does not know as an unknown operation, as in Fig. 4(a).

As this very partial specification is included in the API’s extracted specification
(Fig. 3(b)), there will be a match. Furthermore, we can deduce what should replace
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2read
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write
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Z

(*,X,read) 7→ open,canRead
(*,X,write) 7→ open
Y 7→ close
Z 7→ close

(a) (b)

Fig. 5 (a) Symbolic automaton representing the query for the behavior around read and write methods
and (b) the assignment with contexts to its symbolic transitions which answers the query.

the symbolic portions of the query. This means the user can get the reply to his query
that X should be replaced by open,canRead and Y by close.

Fig. 5 shows a more complex query and its assignment. The assignment to the
variable X is made up of two different assignments for the different contexts surround-
ing X: when followed by write, X is assigned open, and when followed by read, X
is assigned the word open,canRead. Even though the branching point in Fig. 3(b) is
not identical to the one in the query, the query can still return a correct result using
contexts.

2.2 An Abstract Domain of Symbolic Automata

To provide a formal background for the operations we demonstrated here informally,
we define an abstract domain based on symbolic automata. Operations in the domain
correspond to natural operators required for effective specification mining and an-
swering code search queries. Our abstract domain serves a dual goal: (i) it is used to
represent partial temporal specification during the analysis of each individual code
snippet; (ii) it is used for consolidation and answering code search queries across
multiple snippets.

In its first role—used in the analysis of a single snippet—the abstract domain
can further employ a quotient abstraction to guarantee that symbolic automata do not
grow without a bound due to loops or recursion [23]. In Section 4.2, we show how to
obtain a lattice based on symbolic automata.

In the second role—used for consolidation and answering code-search queries—
query matching can be understood in terms of unknown elimination in symbolic au-
tomata (explained in Section 6), and consolidation can be understood in terms of join
in the abstract domain, followed by “minimization” (explained in Section 7).

3 Symbolic Automata

We represent partial typestate specifications using symbolic automata defined below.

Definition 1 A deterministic symbolic automaton (DSA) is a tuple 〈Σ,Q, δ, ι, F,Vars〉
where:

– Σ is a finite alphabet a, b, c, . . .;
– Q is a finite set of states q, q′, . . .;
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– δ is a partial function fromQ×(Σ∪Vars) toQ, representing a transition relation;
– ι ∈ Q is an initial state;
– F ⊆ Q is a set of final states;
– Vars is a finite set of variables x, y, z, . . .

Our definition mostly follows the standard notion of deterministic finite automata.
Two differences are that transitions can be labeled not just by alphabet symbols but
by variables, and that they are partial functions, instead of total ones. Hence, an au-
tomaton might get stuck at a letter in a state, because the transition for the letter at
the state is not defined.

We write (q, l, q′) ∈ δ for a transition δ(q, l) = q′ where q, q′ ∈ Q and l ∈
Σ ∪ Vars. If l ∈ Vars, the transition is called symbolic. We extend δ to words over
Σ∪Vars in the usual way. Note that this extension of δ over words is a partial function,
because of the partiality of the original δ. When we write δ(q, s) ∈ Q0 for such words
s and a state setQ0 in the rest of the paper, we mean that δ(q, s) is defined and belongs
to Q0.

A path π of a DSA is a sequence of states q0, . . . , qn such that qi ∈ Q for every
0 ≤ i ≤ n, and for every 0 ≤ i ≤ n − 1, there exists li ∈ Σ ∪ Vars such that
δ(qi, li) = qi+1. We then say that the symbolic word l0 . . . ln−1 labels the path π. If,
in addition, q0 = ι and qn ∈ F , we say that π is accepting.

From now on, we fix Σ and Vars and omit them from the notation of a DSA.

3.1 Semantics

For a DSA A, we define its symbolic language, denoted SL(A), to be the set of all
words over Σ ∪ Vars accepted by A, i.e.,

SL(A) = {s ∈ (Σ ∪ Vars)∗ | δ(ι, s) ∈ F}.

Words over Σ ∪ Vars are called symbolic words, whereas words over Σ are called
concrete words. Similarly, languages over Σ ∪Vars are symbolic, whereas languages
over Σ are concrete.

The symbolic language of a DSA can be interpreted in different ways, depending
on the semantics of variables: (i) a variable represents a sequence of letters from Σ;
(ii) a variable represents a regular language overΣ; (iii) a variable represents different
sequences of letters from Σ under different contexts.

All above interpretations of variables, except for the last, assign some value to
a variable while ignoring the context in which the variable lies. This is not always
desirable. For example, consider the DSA in Fig. 6(a). We want to be able to in-
terpret x as d when it is followed by b, and to interpret it as e when it is followed
by c (Fig. 6(b)). Motivated by this example, we focus here on the last possibility of
interpreting variables, which also considers their context. Formally, we consider the
following definitions.

Definition 2 A context-sensitive assignment, or in short assignment, σ is a function
from (Σ ∪ Vars)∗ × Vars× (Σ ∪ Vars)∗ to the set of nonempty regular languages on
(Σ ∪ Vars).
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Fig. 6 DSAs (a) and (b).
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Fig. 7 DSA before and after assignment

When σ maps (s1, x, s2) to SL, we refer to (s1, s2) as the context of x. The mean-
ing is that an occurrence of x in the context (s1, s2) is to be replaced by SL (i.e., by
any word from SL). Thus, it is possible to assign multiple words to the same variable
in different contexts. The context used in an assignment is the full context preceding
and following x. In particular, it is not restricted in length and it can be symbolic,
i.e., it can contain variables. Note that these assignments consider a linear context
of a variable. A more general definition would consider the branching context of a
variable (or a symbolic transition).

Formally, applying σ to a symbolic word behaves as follows. For a symbolic word
s = l1l2 . . . ln, where li ∈ Σ ∪ Vars for every 1 ≤ i ≤ n,

σ(s) = SL1SL2 . . .SLn

where (i) SLi = {li} if li ∈ Σ; and (ii) SLi = SL if li ∈ Vars is a variable x and
σ(l1...li−1, x, li+1...ln) = SL.

Accordingly, for a symbolic language SL, σ(SL) =
⋃
{σ(s) | s ∈ SL}.

Definition 3 An assignment σ is concrete if its image consists of concrete languages
only. Otherwise, it is symbolic.

If σ is concrete, then σ(SL) is a concrete language; whereas if σ is symbolic, then
σ(SL) can still be symbolic.

In the sequel, when σ maps some x to the same language in several contexts, we
sometimes write σ(C1, x, C2) = SL as an abbreviation for σ(s1, x, s2) = SL for
every (s1, s2) ∈ C1 × C2. We also write ∗ as an abbreviation for (Σ ∪ Vars)∗.

Example 1 Consider the DSAA from Fig. 6(a). Its symbolic language is {axb, axc}.
Now consider the concrete assignment σ : (∗, x, b∗) 7→ d, (∗, x, c∗) 7→ e. Then
σ(axb) = {adb} and σ(axc) = {aec}, which means that σ(SL(A)) = {adb, aec}.
If we consider σ : (∗, x, b∗) 7→ d∗, (∗, x, c∗) 7→ (e|b)∗, then σ(axb) = ad∗b and
σ(axc) = a(e|b)∗c, which means that σ(SL(A)) = (ad∗b)|(a(e|b)∗c).
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Example 2 Consider the DSA A depicted in Fig. 7(a) and consider the symbolic
assignment σ which maps (∗ab, x, ∗) to g, and maps x in any other context to x. The
assignment is symbolic since in any incoming context other than ∗ab, x is assigned
x. Then Fig. 7(b) presents a DSA for σ(SL(A)).

Completions of a DSA Each concrete assignment σ to a DSAA results in some “com-
pletion” of SL(A) into a language over Σ (c.f. Example 1). We define the semantics
of a DSA A, denoted JAK, as the set of all languages over Σ obtained by concrete
assignments:

JAK = {σ(SL(A)) | σ is a concrete assignment}.

We call JAK the set of completions of A.
For example, for the DSA from Fig. 6(a), {adb, aec} ∈ JAK (see Example 1).

Note that if a DSA A has no symbolic transition, i.e. SL(A) ⊆ Σ∗, then JAK =
{SL(A)}.

Remark 1 The interested reader might wonder about the expressive power of the lan-
guages accepted by symbolic automata, and about their closure properties. We note,
however, that when talking about symbolic automata, our main interest is not their
languages but their sets of completions. The language of a DSA is simply a regular
language (over an alphabet extended by the set of variables). The set of completions
of a DSA, on the other hand, is not a single language, but a set of languages. In this
sense, the discussion of expressive power and closure properties in their traditional
formulation is not natural.

4 An Abstract Domain for Specification Mining

In this section we lay the ground for defining common operations on DSAs by defin-
ing a preorder on DSAs. In later sections, we use this preorder to define an algorithm
for query matching (Section 5), completion of partial specification (Section 6), and
consolidation of multiple partial specification (Section 7).

The definition of a preorder over DSAs is motivated by two concepts. The first is
precision. We are interested in capturing that one DSA is an overapproximation of an-
other, in the sense of describing more behaviors (sequences) of an API. When DFAs
are considered, language inclusion is suitable for capturing a precision (abstraction)
relation between automata. The second is partialness. We would like to capture that a
DSA is “more complete” than another in the sense of having less variables that stand
for unknown information.

4.1 Preorder on DSAs

Our preorder combines precision and partialness. Since the notion of partialness is
less standard, we first explain how it is captured for symbolic words. The consid-
eration of symbolic words rather than DSAs allows us to ignore the dimension of
precision and focus on partialness, before we combine the two.



Symbolic Automata for Representing Big Code 11

0 1a 2x

0

1a

3

b

2

4

x

c

(a) (b)

0 1a 2x 0 1a 32d e

(c) (d)

Fig. 8 Dimensions of the preorder on DSAs

4.1.1 Preorder on Symbolic Words

Definition 4 Let s1, s2 be symbolic words. s1 ≤ s2 if for every concrete assignment
σ2 to s2, there is a concrete assignment σ1 to s1 such that σ1(s1) = σ2(s2).

This definition captures the notion of a symbolic word being “more concrete” or
“more complete” than another: Intuitively, the property that no matter how we fill
in the unknown information in s2 (using a concrete assignment), the same comple-
tion can also be obtained by filling in the unknowns of s1, ensures that every un-
known of s2 is also unknown in s1 (which can be filled in the same way), but s1 can
have additional unknowns. Thus, s2 has “no more” unknowns than s1. In particular,
{σ(s1) | σ is a concrete assignment} ⊇ {σ(s2) | σ is a concrete assignment}. Note
that when considering two concrete words w1, w2 ∈ Σ∗ (i.e., without any variable),
w1 ≤ w2 iff w1 = w2. In this sense, the definition of ≤ over symbolic words is a
relaxation of equality over words.

For example, abxcd ≥ ayd according to our definition. Intuitively, this relation-
ship holds because abxcd is more complete (carries more information) than ayd.

4.1.2 Symbolic Inclusion of DSAs

We now define the preorder over DSAs that combines precision with partialness. On
the one hand, we say that a DSA A2 is “bigger” than A1, if A2 describes more pos-
sible behaviors of the API, as captured by standard automata inclusion. For example,
see the DSAs (a) and (b) in Fig. 8. On the other hand, we say that a DSA A2 is
“bigger” thanA1, ifA2 describes “more complete” behaviors, in terms of having less
unknowns. For example, see the DSAs (c) and (d) in Fig. 8.

However, these examples are simple in the sense of “separating” the precision
and the partialness dimensions. Each of these examples demonstrates one dimension
only. We are also interested in handling cases that combine the two, such as cases
where A1 and A2 represent more than one word, thus the notion of completeness of
symbolic words alone is not applicable, and in addition the language of A1 is not
included in the language of A2 per se, e.g., since some of the words in A1 are less
complete than those of A2. This leads us to the following definition.
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Definition 5 (symbolic-inclusion) A DSA A1 is symbolically-included in a DSA
A2, denoted by A1 � A2, if for every concrete assignment σ2 of A2 there exists a
concrete assignment σ1 of A1, such that σ1(SL(A1)) ⊆ σ2(SL(A2)).

The above definition ensures that for each concrete language L2 that is a comple-
tion of A2, A1 can be assigned in a way that will result in its language being included
in L2. This means that the “concrete” parts ofA1 andA2 admit the inclusion relation,
and A2 is “more concrete” than A1. Note that A1 is symbolically-included in A2 iff
for every L2 ∈ JA2K there exists L1 ∈ JA1K such that L1 ⊆ L2.

Example 3 The DSA depicted in Fig. 6(a) is symbolically-included in the one de-
picted in Fig. 6(b), since for any assignment σ2 to (b), the assignment σ1 to (a) that
will yield a language included in the language of (b) is σ : (∗, x, b∗) 7→ d, (∗, x, c∗) 7→
e. Note that if we had considered assignments to a variable without a context, the
same would not hold: If we assign to x the sequence d, the word adc from the as-
signed (a) will remain unmatched. If we assign e to x, the word aeb will remain
unmatched. If we assign to x the language d|e, then both of the above words will
remain unmatched. Therefore, when considering context-free assignments, there is
no suitable assignment σ1.

Theorem 1 � is reflexive and transitive.

Proof Reflexivity: LetA be a DSA. ThenA � A since for every concrete assignment
σ to A, σ will fulfill σ(SL(A)) ⊆ σ(SL(A)).

Transitivity: LetA1, A2, A3 be DSAs such thatA1 � A2 andA2 � A3. We show
that A1 is symbolically-included in A3. Let σ3 be a concrete assignment to A3. Then
there exists a concrete assignment σ2 to A2 such that σ2(SL(A2)) ⊆ σ3(SL(A3))
(since A2 � A3). Similarly, since A1 � A2, then in particular for σ2 there exists a
concrete assignment σ1 to A1 such that σ1(SL(A1)) ⊆ σ2(SL(A2)). By transitivity
of language inclusion, we get that σ1(SL(A1)) ⊆ σ3(SL(A3)). ut

4.1.3 Structural Inclusion

As a basis for an algorithm for checking if symbolic-inclusion holds between two
DSAs, we note that provided that any alphabet Σ′ can be used in assignments, the
following definition is equivalent to Definition 5.

Definition 6 A1 is structurally-included in A2 if there exists a symbolic assignment
σ to A1 such that σ(SL(A1)) ⊆ SL(A2). We say that σ witnesses the structural
inclusion of A1 in A2.

Theorem 2 Let A1, A2 be DSAs. Then A1 � A2 iff A1 is structurally-included
in A2.

Before we turn to prove Theorem 2, we note that if there is a witnessing assign-
ment for structural inclusion, then in particular there exists one that assigns a single
sequence to each variable in every context, as formalized by the following lemma. It
will be used in the proof of Theorem 2.
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Lemma 1 A1 is structurally-included in A2 iff there exists a symbolic assignment
σ to A1, such that σ(SL(A1)) ⊆ SL(A2), and the image of σ consists of singleton
languages only.

Proof Suppose there exists a symbolic assignment σ to A1, such that σ(SL(A1)) ⊆
SL(A2). We show that there is also such an assignment σ′ whose image consists
of singleton languages only. We define σ′ by arbitrarily keeping one sequence from
each language participating in the image of σ. Clearly, σ′(SL(A1)) ⊆ σ(SL(A1)) ⊆
SL(A2). ut

Proof (Theorem 2) We first show that structural inclusion implies symbolic-inclusion.
SupposeA1 is structurally included inA2. Then there exists a symbolic assignment σ
such that σ(SL(A1)) ⊆ SL(A2), i.e., for every s ∈ SL(A1), σ(s) ⊆ SL(A2). With-
out loss of generality (by Lemma 1), σ assigns to each variable a single sequence
under each context. To show that A1 � A2, consider some assignment σ2 of A2. To
find a corresponding assignment σ1 to A1 such that σ1(SL(A1)) ⊆ σ2(SL(A2)), we
consider the composition of σ2 on σ, defined as follows.

Let a1, a2, . . . , an, b1, b2, . . . , bm ∈ Σ ∪ Vars and x ∈ Vars. Then

σ1(a1a2 . . . an, x, b1b2 . . . bm) = {w1}L1{w2} . . . {wk}Lk{wk+1}

where w1, w2, . . . , wk+1 ∈ Σ∗, L1, . . . , Lk ⊆ Σ∗, and there exist

– x1, . . . , xk ∈ Vars and
– s1, . . . , sn, s

′
1, . . . s

′
m ∈ (Σ ∪ Vars)∗

such that:

– σ(a1a2 . . . an, x, b1b2 . . . bm) = {w1x1w2 . . . wkxkwk+1}.
– For every 1 ≤ i ≤ n such that ai ∈ Vars:

σ(a1 . . . ai−1, ai, ai+1 . . . anxb1b2 . . . bm) = {si}.
– For every 1 ≤ i ≤ n such that ai ∈ Σ: si = ai.
– For every 1 ≤ i ≤ m such that bi ∈ Vars:

σ(a1 . . . anxb1 . . . bi−1, bi, bi+1 . . . bm) = {s ′i}.
– For every 1 ≤ i ≤ m such that bi ∈ Σ: s ′i = bi.
– For every 1 ≤ i ≤ k:

σ2(s1 . . . snw1x1 . . . wi, xi, wi+1 . . . xkwk+1s
′
1 . . . s

′
m) = Li.

In other words, if

σ(a1a2 . . . anxb1b2 . . . bm) = {s1 . . . snw1x1w2 . . . wkxkwk+1s
′
1 . . . s

′
m}

∧ σ2(s1 . . . snw1x1w2 . . . wkxkwk+1s
′
1 . . . s

′
m)

= L′{w1}L1{w2} . . . {wk}Lk{wk+1}L′′,

then σ1(a1 . . . anxb1 . . . bm) is also equal to L′{w1}L1{w2} . . . {wk}Lk{wk+1}L′′.
Therefore, the definition of σ1 ensures for every symbolic word s ∈ SL(A1), σ1(s) =
σ2(σ(s)). Since σ(s) ⊆ SL(A2) (by the choice of σ), we conclude that σ1(s) =
σ2(σ(s)) ⊆ σ2(SL(A2)), and hence σ1(SL(A1)) ⊆ σ2(SL(A2)).

We now show that symbolic-inclusion implies structural inclusion. SupposeA1 �
A2. For each variable x ∈ Vars, we introduce a new letter ax ∈ Σ′. We now define an
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Fig. 9 Example for a case where symbolic-inclusion does not imply structural inclusion
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Fig. 10 Example for a case where there is no assignment to either (a) or (b) to show (a)� (b) or (b)� (a),
and where there is such an assignment for (a) so that (a) � (c).

assignment σ2 toA2 such that for every x ∈ Vars, and for every s1, s2 ∈ (Σ′∪Vars)∗,
σ2 : (s1, x, s2) 7→ ax. Since A1 � A2, there exists an assignment σ1 such that
σ1(SL(A1)) ⊆ σ2(SL(A2)). To obtain a symbolic assignment σ to A1 such that
σ(SL(A1)) ⊆ SL(A2), we replace every occurrence of ax in σ1 by x. ut

To understand why we need to consider assignments over an extended alphabet
Σ′, consider the following example.

Example 4 Consider the DSAs in Fig. 9. Structural inclusion does not hold between
(a) and (b). However, when considering assignments over Σ = {a} only, (a) is
symbolically-included in (b). Note that if we also consider assignments over, say
{a, b}, then, symbolic-inclusion ceases to hold as well, regaining the relation between
structural inclusion and symbolic-inclusion.

The corollary below provides another sufficient condition for symbolic-inclusion:

Corollary 1 If SL(A1) ⊆ SL(A2), then A1 � A2.
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Fig. 11 Equivalent DSAs w.r.t. symbolic-inclusion

Example 5 The DSA depicted in Fig. 10(a) is not symbolically-included in the one
depicted in Fig. 10(b) since no symbolic assignment to (a) will substitute the symbolic
word axbg by a (symbolic) word (or set of words) in (b). This is because assignments
cannot “drop” any of the contexts of a variable (e.g., the outgoing bg context of x).
Such assignments are undesirable since removal of contexts amounts to removal of
observed behaviors.

On the other hand, the DSA depicted in Fig. 10(a) is symbolically-included in
the one depicted in Fig. 10(c), since there is a witnessing assignment that maintains
all the contexts of x, namely, σ : (a, x, b∗) 7→ d, (a, x, cf∗) 7→ h, (a, x, cg∗) 7→
eh∗e, (bya, x, ∗) 7→ d, (∗, y, ∗) 7→ zd. Assigning σ to (a) results in a DSA whose
symbolic language is strictly included in the symbolic language of (c). Note that
symbolic-inclusion holds despite of the fact that in (c) there is no longer a state with
an incoming c event and both an outgoing f and an outgoing g events while being
reachable from the state 1. This example demonstrates our interest in linear behav-
iors, rather than in branching behavior. Note that in this example, symbolic-inclusion
would not hold if we did not allow to refer to contexts of any length (and in particular
length > 1).

4.2 A Lattice for Specification Mining

As stated in Theorem 1, � is reflexive and transitive, and therefore a preorder. How-
ever, it is not antisymmetric. This is not surprising, since for DFAs � collapses into
standard automata inclusion, which is also not antisymmetric (due to the existence of
different DFAs with the same language). In the case of DSAs, symbolic transitions
are an additional source of problem, as demonstrated by the following example.

Example 6 The DSAs in Fig. 11 satisfy � in both directions even though their sym-
bolic languages are different. DSA (a) is trivially symbolically-included in (b) since
the symbolic language of (a) is a subset of the symbolic language of (b) (see Corol-
lary 1). For the other direction, symbolic inclusion holds by Lemma 1 when assigning
d to x in (b) in any context.

Examining the example closely shows that the reason that symbolic-inclusion
holds in both directions even though the DSAs have different symbolic languages is
that the symbolic language of DSA (b) contains the symbolic word axb, as well as
the concrete word adb, which is a completion of axb. In this sense, axb is subsumed
by the rest of the DSA, which amounts to DSA (a).
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In order to obtain a partial order, we follow a standard construction of turning
a preordered set to a partially ordered set. We first define the following equivalence
relation based on �:

Definition 7 DSAs A1 and A2 are symbolically-equivalent, denoted by A1 ≡ A2,
iff A1 � A2 and A2 � A1.

Theorem 3 ≡ is an equivalence relation over the set DSA of all DSAs.

We now lift the discussion to the quotient set DSA/≡, which consists of the
equivalence classes of DSA w.r.t. the ≡ equivalence relation.

Definition 8 Let [A1], [A2] ∈ DSA/≡. Then [A1] v [A2] if A1 � A2.

Theorem 4 v is a partial order over DSA/≡.

Proof Reflexivity and transitivity follow immediately from the properties of � over
DSAs. We prove that unlike the latter, v over DSA/ ≡ is also antisymmetric. Sup-
pose [A1] v [A2] and [A2] v [A1]. Then A1 � A2 and vice versa, hence A1 ≡ A2,
and thus [A1] = [A2]. ut
Definition 9 For DSAs A1 and A2, we use union(A1, A2) to denote a union DSA
for A1 and A2, which is defined similarly to the definition of union of DFAs. That is,
union(A1, A2) is a DSA such that SL(union(A1, A2)) = SL(A1) ∪ SL(A2).

Theorem 5 Let [A1], [A2] ∈ DSA/≡ and let union(A1, A2) be a union DSA for
A1 and A2. Then [union(A1, A2)] is the least upper bound of [A1] and [A2] w.r.t. v.

Proof We first show that [union(A1, A2)] w [Ai] for every i ∈ {1, 2}. This follows
since SL(union(A1, A2)) = SL(A1)∪SL(A2) ⊇ SL(Ai) and hence by Corollary 1,
Ai � union(A1, A2).

We now show that if [A] w [Ai] for every i ∈ {1, 2}, then

[A] w [union(A1, A2)].

It suffices to show that union(A1, A2) � A. Since [A] w [Ai], we conclude that
Ai � A. Consider a concrete assignment σ to A. Since [A] w [Ai], Ai � A, thus
there exists an assignment σi such that σi(SL(Ai)) ⊆ σ(SL(A)). This means that
σ1(SL(A1))∪σ2(SL(A2)) ⊆ σ(SL(A)). Consider the assignment σ′ to union(A1, A2)
obtained by σ′1 ∪ σ′2, where σ′1 is identical to σ1, except that it is undefined for sym-
bolic words in SL(A2), and σ′2 is identical to σ2, except that it is defined only for
symbolic words in SL(A2). This ensures that the assignment is well defined. In addi-
tion,

σ′(SL(union(A1, A2)) = σ′(SL(A1) ∪ SL(A2))

= σ′(SL(A1)) ∪ σ′(SL(A2))

= σ1(SL(A1) \ SL(A2)) ∪ σ2(SL(A2))

⊆ σ1(SL(A1)) ∪ σ2(SL(A2)) ⊆ σ(SL(A)).
We conclude that union(A1, A2) � A. ut
Corollary 2 (DSA/≡,v) is a join semi-lattice.

The ⊥ element in the lattice is the equivalence class of a DSA for ∅. The >
element is the equivalence class of a DSA for Σ∗.
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5 Query Matching Using Symbolic Simulation

Given a query in the form of a DSA, and a database of other DSAs, query matching
attempts to find DSAs in the database that symbolically include the query DSA. In
this section, we describe a notion of simulation for DSAs, which precisely captures
the preorder on DSAs and serves a basis of core algorithms for manipulating sym-
bolic automata. In particular, in Section 5.2, we provide an algorithm for computing
symbolic simulation that can be directly used to determine when symbolic inclusion
holds.

5.1 Symbolic Simulation

Let A1 and A2 be DSAs 〈Q1, δ1, ι1, F1〉 and 〈Q2, δ2, ι2, F2〉, respectively.

Definition 10 A relation H ⊆ Q1 × (2Q2 \ {∅}) is a symbolic simulation from A1

to A2 if it satisfies the following conditions:

(a) (ι1, {ι2}) ∈ H;
(b) for every (q,B) ∈ H , if q is a final state, some state in B is final;
(c) for every (q,B) ∈ H and q′ ∈ Q1, if q′ = δ1(q, a) for some a ∈ Σ,

∃B′ s.t. (q′, B′) ∈ H ∧ B′ ⊆ {q′2 | ∃q2 ∈ B s.t. q′2 = δ2(q2, a)};

(d) for every (q,B) ∈ H and q′ ∈ Q1, if q′ = δ1(q, x) for x ∈ Vars,

∃B′ s.t. (q′, B′) ∈ H ∧ B′ ⊆ {q′2 | ∃q2 ∈ B s.t. q′2 is reachable from q2}.

We say that (q′, B′) in the third or fourth item above is a witness for ((q,B), l), or an
l-witness for (q,B) for l ∈ Σ ∪ Vars. Finally, A1 is symbolically simulated by A2 if
there exists a symbolic simulation H from A1 to A2.

In this definition, a state q of A1 is simulated by a nonempty set B of states from
A2, with the meaning that their union overapproximates all of its outgoing behaviors.
In other words, the role of q in A1 is “split” among the states of B in A2. A “split”
arises from symbolic transitions, but the “split” of the target of a symbolic transition
can be propagated forward for any number of steps, thus allowing states to be sim-
ulated by sets of states even if they are not the target of a symbolic transition. This
accounts for splitting that is performed by an assignment with a context longer than
one. Note that since we consider deterministic symbolic automata, the sizes of the
sets used in the simulation are monotonically decreasing, except for when a target of
a symbolic transition is considered, in which case the set increases in size.

Note that a state q1 of A1 can participate in more than one simulation pair in the
computed simulation, as demonstrated by the following example.

Example 7 Consider the DSAs in Fig. 10(a) and (c). In this case, the simulation will
be

H = { (0, {0}), (1, {1}), (2, {2, 6, 9}), (3, {3}), (4, {4, 10}), (5, {7}), (6, {12})
(7, {11}), (8, {8}), (9, {13}), (10, {15}), (1, {16}), (2, {17}), (4, {18}),
(7, {20}), (8, {19}), (3, {18}), (5, {20}), (6, {19}) }.
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One can see that state 2 in (a), which is the target of the transition labeled x, is “split”
between states 2, 6 and 9 of (c). In the next step, after seeing b from state 2 in (a), the
target state reached (state 3) is simulated by a singleton set. On the other hand, after
seeing c from state 2 in (a), the target state reached (state 4), is still “split”, however
this time to only two states: 4 and 10 in (c). In the next step, no more splitting occurs.

Note that the state 1 in (a) is simulated both by {1} and by {16}. Intuitively, each
of these sets simulates the state 1 in another incoming context (a and b, respectively).

Theorem 6 (Soundness) For all DSAs A1 and A2, if there is a symbolic simulation
H from A1 to A2, then A1 � A2.

Our proof of this theorem uses Theorem 2 and constructs a desired symbolic assign-
ment σ that witnesses structural inclusion of A1 in A2 explicitly from H . This con-
struction shows, for any symbolic word in SL(A1), the assignment (completion) to
all variables in it (in the corresponding context). Taken together with our next com-
pleteness theorem (Theorem 7), this construction supports a view that a symbolic
simulation serves as a finite representation of symbolic assignment in the preorder.
We develop this further in Section 6.

Proof Let H be a symbolic simulation from A1 to A2. We show that there exists a
symbolic assignment σ such that σ(SL(A1)) ⊆ SL(A2). Recall that σ(SL(A1)) =⋃
{σ(s) | s ∈ SL(A1)}. Hence, it suffices to find σ such that for every s ∈ SL(A1),

σ(s) ⊆ SL(A2).
Let s = l1 . . . ln ∈ SL(A1) where each li ∈ Σ∪Vars. First, we define a sequence

of simulation pairs h = h0 . . . hn, where h0 = (ι1, {ι2}), and for every 1 ≤ i ≤ n,
hi ∈ H is an li-witness for hi−1. The sequence is well defined, since by the definition
of H , a corresponding witness always exists. Note that if several witnesses exist, one
of them is chosen arbitrarily.

The idea is to track a symbolic word in A2 that matches s , up to variables, by
following the simulation pairs in h. For this purpose, we first need to minimize the
simulation pairs to include only states that are relevant to the simulation of the par-
ticular word s . Once this is done, any path in A2 through h defines a symbolic word
that matches s up to variables, and accordingly defines a possible assignment for the
variables in s .

We therefore first apply the following minimization algorithm on h: The algo-
rithm updates the second component of the hi’s from i = n − 1 to i = 0. For
hn = (qn, Bn), we remove all non-final states from Bn, and set B̃n to be the set of
the remaining ones in Bn. Suppose hi = (qi, Bi) and hi+1 = (qi+1, Bi+1), where
hi+1 is an li+1-witness for hi. Let B̃i+1 denote the updated Bi+1. Then we remove
from Bi all the states that contributed no states to B̃i+1. More specifically:

– If li+1 ∈ Σ, we let B̃i = {q2 ∈ Bi | ∃q′2 ∈ B̃i+1 s.t. δ2(q2, li+1) = q′2}.
– If li+1 ∈ Vars, we let B̃i = {q2 ∈ Bi | ∃q′2 ∈ B̃i+1 s.t. q2 is reachable from q2}.

Importantly, no set becomes empty as a result of the update, since B̃i+1 ⊆ Bi+1,
which ensures that every state in B̃i+1 is contributed by at least one state in Bi.

Once h is minimized as above, we greedily choose states

q20 = ι2 ∈ B̃0, q
2
1 ∈ B̃1, . . . , q

2
n ∈ B̃n
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such that if li ∈ Σ, then δ2(q
2
i−1, li) = q2i , and otherwise, q2i is reachable from

q2i−1. This choice of states defines a symbolic word s ′ that matches s up to vari-
ables. Moreover, given this choice, for li ∈ Vars, each symbolic word s̃i such that
δ2(q

2
i−1, s̃i) = q2i is a possible match for li. We denote such s̃i by match(li).
Now we are ready to define the desired symbolic assignment σ. Suppose that

s = w1x1w2 . . . wkxkwk+1 where x1, . . . , xk ∈ Vars and w1, . . . , wk+1 ∈ Σ∗. We
let sj and s ′j be the following prefix and suffix of s:

sj = w1x1w2 . . . wj−1xj−1wj , s ′j = wj+1xj+1wj+2 . . . wkxkwk+1.

Then for every 1 ≤ j ≤ n,

σ(sj , xj , s
′
j) = {match(xj)}.

We now get that σ(s) = {s ′} ⊆ SL(A2), as required. ut

Theorem 7 (Completeness) For all DSAs A1 and A2, if A1 � A2, then there is a
symbolic simulation H from A1 to A2.

Proof Let σ be a symbolic assignment such that σ(SL(A1)) ⊆ SL(A2). Without loss
of generality, we can assume that σ maps all variables and contexts to singleton lan-
guages. This is because otherwise, we can reduce σ such that the resulting assignment
satisfy this singleton-language requirement. Since σ satisfies this singleton-language
requirement, we have that for every s ∈ SL(A1), σ(s) = {s ′} for some s ′ ∈ SL(A2).
We define a symbolic simulation H from A1 to A2 based on σ.

We start by removing from A1 and A2 all states that do not lie on any path from
an initial to an accepting state. In the rest of the proof, by A1 and A2, we refer to the
pruned DSAs. Clearly, SL(A1) and SL(A2) remain unchanged, thus σ(SL(A1)) ⊆
SL(A2) still holds.

The idea is to consider for each state q1 ∈ Q1, all the symbolic words that lead
to it in A1, and for each of these words s , let q1 be simulated by the set of all states
in A2 reached when traversing the symbolic words resulting from assigning σ to s
when considering s as a prefix of s ′, for every s ′ ∈ SL(A1) that extends s . The
consideration of s ′ is needed since the result of applying σ on a variable depends on
the (full) context.

Technically, for a symbolic word s ′ = l1l2 . . . ln, and for 0 ≤ k ≤ n we define
σ ↓k (s ′), which describes the result of assigning σ to the prefix of s ′ of length
k while taking into consideration the full context based on s ′. The symbolic word
σ ↓k (s ′) is defined as follows. σ ↓k (l1l2 . . . ln) = L1L2 . . . Lk where Li = {li} if
li ∈ Σ, andLi = L if li is a variable x and σ(l1...li−1, x, li+1...ln) = L. In particular,
for k = 0, σ ↓0 (l1l2 . . . ln) = {ε}, and for k = n, σ ↓n (l1l2 . . . ln) = σ(l1l2 . . . ln).

Since we consider an assignment σ whose image consists of singleton languages,
we abuse the notation and write σ(s) or σ ↓k (s) as a shorthand for the single word
in the set.

For a symbolic word s , we define

ext(s) = {s ′ ∈ SL(A1) | s is a prefix of s ′},
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which denotes the set of extensions of s in SL(A1). Also, if s is of length k, we define

B(s) = {δ2(ι2, σ ↓k (s ′)) ∈ Q2 | s ′ ∈ ext(s)}

to be the set of states reached in A2 when following the symbolic word obtained by
applying σ to some extension s ′ of s up to the k’th symbol.

Let

H = {(δ1(ι1, s), B(s)) | s ∈ (Σ ∪ Vars)∗ ∧ δ1(ι1, s) is defined}.

In the rest of the proof, we will show that H is a symbolic simulation from A1 to A2.
The first requirement to check is thatH ⊆ Q1×(2Q2 \{∅}). Pick s ∈ (Σ∪Vars)∗

such that δ1(ι1, s) is defined. Since we keep only those states in A1 that lie in a path
from the initial state to an accepting state, there exists at least one s ′ ∈ ext(s) ⊆
SL(A1), which in turn implies that σ(s ′) ∈ SL(A2). Then, δ2(ι2, σ ↓k (s ′)) is
defined, and belongs to B(s). Hence, B(s) 6= ∅.

The next requirement is that (ι1, {ι2}) ∈ H . This holds because

δ1(ι1, ε) = ι1 ∧ B(ε) = {δ2(ι2, σ ↓0 (s ′)) ∈ Q2 | s ′ ∈ ext(ε)} = {ι2}.

To prove the remaining requirements, consider (q1, B2) ∈ H . We show that all
the remaining requirements of a symbolic simulation hold. Let s ∈ (Σ ∪ Vars)∗ be a
symbolic word such that q1 = δ1(ι

1, s), and B2 = B(s). Also, let k be the length of
s .

If q1 is a final state, the word s is in SL(A1). Hence, in this case, σ(s) ∈ SL(A2),
so δ(ι2, σ(s)) is a final state. But, δ(ι2, σ(s)) ∈ B(s). It means that B(s) contains a
final state, as required.

Suppose δ1(q1, a) = q′1 for some a ∈ Σ. Then (δ1(ι1, sa), B(sa)) ∈ H is an a-
witness for (q1, B2). First, δ1(ι1, sa) = δ1(δ1(ι1, s), a) = δ1(q1, a) = q′1, and hence
it is defined. It remains to show that

B(sa) ⊆ {δ2(q2, a) | q2 ∈ B2} = {δ2(q2, a) | q2 ∈ B(s)}.

Let q′2 ∈ B(sa). We need to show that q′2 ∈ {δ2(q2, a) | q2 ∈ B(s)}, i.e. that
there exists q2 ∈ B(s) such that q′2 = δ2(q2, a). Since q′2 ∈ B(sa), there exists
s ′ ∈ ext(sa) such that

q′2 = δ2(ι2, σ ↓k+1 (s ′)) = δ2(ι2, σ ↓k (s ′)a) = δ2(δ2(ι2, σ ↓k (s ′)), a).

Moreover, s ′ ∈ ext(s) since ext(sa) ⊆ ext(s). So, δ2(ι2, σ ↓k (s ′)) ∈ B(s). Thus
for q2 = δ2(ι2, σ ↓k (s ′)) ∈ B(s), we have that q′2 = δ2(q2, a).

Suppose δ1(q1, x) = q′1 for some x ∈ Vars. Then (δ1(ι1, sx), B(sx)) ∈ H is an
x-witness for (q1, B2). First,

δ1(ι1, sx) = δ1(δ1(ι1, s), x) = δ1(q1, x) = q′1.

Hence it is defined. It remains to show that every state q′2 ∈ B(sx) is reachable in A2

from some q2 ∈ B(sx). Let q′2 ∈ B(sx). Since q′2 ∈ B(sx), there exist s ′ ∈ ext(sx)
and sx such that

q′2 = δ2(ι2, σ ↓k+1 (s ′)) = δ2(ι2, σ ↓k (s ′)sx) = δ2(δ2(ι2, σ ↓k (s ′)), sx).
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Moreover, s ′ ∈ ext(s) since ext(sx) ⊆ ext(s). So, δ2(ι2, σ ↓k (s ′)) ∈ B(s). Thus
for q2 = δ2(ι2, σ ↓k (s ′)) ∈ B(s), we have that q′2 = δ2(q2, sx), which means q′2 is
reachable from q2. ut

5.2 Algorithm for Checking Simulation

A maximal symbolic simulation relation can be computed using a greatest fixpoint
algorithm (similarly to the standard simulation). A naive implementation would con-
sider all sets in 2Q2 , making it exponential.

More efficiently, we obtain a symbolic simulation relationH by an algorithm that
traverses both DSAs simultaneously, starting from (ι1, {ι2}), similarly to a computa-
tion of a product automaton (see Algorithm 1). For each pair (q1, B2) that we explore,
we make sure that if q1 ∈ F1, thenB2∩F2 6= ∅. If this is not the case, the pair cannot
be part of the simulation. Otherwise, we traverse all the outgoing transitions of q1,
and for each one, we look for a witness in the form of another simulation pair, as
required by Definition 10 (see below). If a witness is found, it is added to the list of
simulation pairs that need to be explored. If no witness is found, the pair (q1, B2)
cannot participate in the simulation.

Consider a candidate simulation pair (q1, B2). When looking for a witness for
some transition of q1, a crucial observation is that if some set B′2 ⊆ Q2 simulates
a state q′1 ∈ Q1, then any superset of B′2 also simulates q′1. Therefore, as a witness
we add the maximal set that fulfills the requirement: if we fail to prove that q′1 is
simulated by the maximal candidate for B′2, then we will also fail with any other
candidate, making it unnecessary to check.

Specifically, for an a-transition, where a ∈ Σ, from q1 to q′1, the witness is
(q′1, B

′
2) where B′2 = {q′2 | ∃q2 ∈ B2 s.t. q′2 = δ2(q2, a)}. If B′2 = ∅, then no

witness exists. For a symbolic transition from q1 to some q′1, the witness is (q′1, B
′
2)

where B′2 is the set of all states reachable from the states in B2 (note that B′2 6= ∅ as
it contains at least the states of B2).

If it turns out that some explored pair (q1, B2) cannot participate in the simulation
(either due to the final states or because no witness was found for some transition),
we conclude that no simulation exists. This is because the potential witnesses that we
consider in each step are maximal. As a result, when it turns out that a witness cannot
be in the simulation, we conclude that no witness exists. This goes back all the way to
the initial pair (ι1, {ι2}). If no more pairs are to be explored, the algorithm concludes
that there is a symbolic simulation, and it is returned.

As an optimization, if a simulation pair (q′1, B
′
2) is to be added as a witness for

some pair where B′2 ⊇ B′′2 and (q′1, B
′′
2 ) ∈ H , we can automatically conclude that

(q′1, B
′
2) will also be verified.1 We therefore do not need to explore it. The witnesses

of (q′1, B
′′
2 ) will also serve as witnesses for (q′1, B

′
2). Note that in this case, the ob-

tained witnesses are not maximal. Alternatively, it is possible to simply use (q′1, B
′′
2 )

instead of (q′1, B
′
2). Since this optimization damages the maximality of the witnesses,

it is not used when maximal witnesses are desired (e.g., when looking for all possible

1 Similar optimizations have been used in the antichain-based algorithms for checking automata inclu-
sion [28,1].
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Algorithm 1: Symbolic simulation checking

Input: DSAs A1 = 〈Q1, δ1, ι1, F1〉, A2 = 〈Q2, δ2, ι2, F2〉
Output: Symbolic simulation H ⊆ Q1 × (2Q2 \ {∅}), or ∅ if does not exist

toExplore = {(ι1, {ι2})} ;
H = ∅ ;
repeat

(q1, B2) = pop(toExplore) ;
H = H ∪ (q1, B2) ;
if q1 ∈ F1 AND B2 ∩ F2 = ∅ then

return ∅;
// Find witnesses
for l : δ1(q1, l) is defined do

if l ∈ Σ then
// find witness for concrete transition
B′

2 = {q′2 | ∃q2 ∈ B2 s.t. q′2 = δ2(q2, l)} ;
if B′

2 = ∅ then
return ∅ ;

else
if (δ1(q1, l), B′

2) 6∈ H then
toExplore = toExplore ∪ {(δ1(q1, l), B′

2)} ;

else
// find witness for symbolic transition
B′

2 = {q′2 | ∃q2 ∈ B2 s.t. q′2 is δ2-reachable from q2} ;
if (δ1(q1, l), B′

2) 6∈ H then
toExplore = toExplore ∪ {(δ1(q1, l), B′

2)} ;

until toExplore = ∅;
return H;

unknown elimination results). (cf., e.g., the works of ¿ Henzinger and Raskin et al or
those of Abdulla et al). This relationship should ¿ probably be mentioned.

Example 8 Consider the DSAs depicted in Fig. 10(a) and (c). A simulation between
these DSAs was presented in Example 7. We now present the simulation computed
by the above algorithm, where “maximal” sets are used as the sets simulating a given
state.

H = {(0, {0}), (1, {1}), (2, {1, . . . , 12, 21}), (3, {3}), (4, {4, 10, 21}), (5, {7}),
(6, {12}), (7, {11}), (8, {8}), (9, {13}), (10, {13, . . . , 20}), (1, {16}),
(2, {16, . . . , 20}), (3, {18}), (4, {18}), (5, {20}), (6, {19}), (7, {20}),
(8, {19})}.

For example, the pair (2, {1, . . . , 12, 21}) is computed as an x-witness for (1, {1}),
even though the subset {2, 6, 9} of {1, . . . , 12, 21} suffices to simulate state 2.

6 Completion Using Unknown Elimination

Let A1 be a DSA that is symbolically-included in A2. This means that the “concrete
parts” of A1 exist in A2 as well, and the “partial” parts of A1 have some comple-
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tion in A2. Our goal is to be able to eliminate (some of) the unknowns in A1 based
on A2. This amounts to finding a (possibly symbolic) assignment to A1 such that
σ(SL(A1)) ⊆ SL(A2) (whose existence is guaranteed by Theorem 2).

As already shown in the proof of Theorem 6, such an assignment can be obtained
from a simulation relation H . There, we described σ by considering each variable
and each possible context separately, showing which symbolic word is assigned to
the variable in this context.

We are interested in providing some finite representation of an assignment σ de-
rived from a simulation H . Namely, for each variable x ∈ Vars, we would like to
represent in some finite way the assignments to x in every possible context in A1.
When the set of contexts in A1 is finite, this can be performed for every symbolic
word (context) separately as described in the proof of Theorem 6. However, we also
wish to handle cases where the set of possible contexts in A1 is infinite.

Basic idea: Let x ∈ Vars be a variable. To identify the possible completions of
x, we identify all the symbolic transitions labeled by x in A1, and for each such
transition, we identify all the states of A2 that participate in simulating its source and
target states, q1 and q′1, respectively. The states simulating q1 and q′1 are given by
states in simulation pairs (q1, B2) ∈ H and (q′1, B

′
2) ∈ H , respectively. The paths

in A2 between states in B2 and B′2 will provide the completions (assignments) of x;
the corresponding contexts will be obtained by tracking the paths in A1 that lead to
(and from) the corresponding simulation pairs, where we make sure that the sets of
contexts are pairwise disjoint.

Example 9 As a simple example, consider the simulation H from Example 7, com-
puted for the DSAs from Fig. 10(a) and (c), and consider the variable y. The only
symbolic transition labeled y in (a) is the transition from state 9 to state 10. The rele-
vant simulation pairs inH are (9, {13}) and (10, {15}). Based on them, we define an
assignment to y where the completion is the symbolic word zd leading from 13 to 15
in (c), and the incoming and outgoing contexts are obtained by examining the sym-
bolic words that lead to 9 and the ones that exit 10 in (a). The result is the assignment
σ(b, y, ax(b|c)(f |g)) = zd.

In Example 9, the derivation of an assignment for y fromH was simple since each
of the source and target states of the corresponding symbolic transition appeared only
in one simulation pair. When we consider the variable x, on the other hand, we realize
that its source state, 1, appears in two simulation pairs, and so does its target state,
2. The former means that under different incoming contexts leading to 1, a different
set from (c) might be needed to simulate 1. Specifically, when reached following a,
1 needs to be simulated by {1}, and when reached following bya, it is simulated by
{16}. Similarly, since 2 participates in several simulation pairs, it means that under
different outgoing contexts exiting 2, a different set might be needed to simulate it.
We therefore need to take these contexts into account when defining the completions
of x. Technically, we need to “split” the incoming symbolic words of 1 and the out-
going symbolic words of 2 in (a) between four contexts under which x is assigned,
where each context is given by another combination of incoming and outgoing con-
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texts. Below we describe the general algorithm for computing an assignment, which
handles such cases as well.

6.1 Algorithm for Deriving an Assignment from a Symbolic Simulation

Let H be a symbolic simulation from A1 to A2. We arbitrarily choose a unique des-
ignated witness for every simulation pair (q1, B2) in H and every transition labeled
l ∈ Σ∪Vars from q1. Whenever we refer to an l-witness of (q1, B2) in the rest of this
section, we mean this chosen designated witness. The reason for making this choice
will become clear later on. Note that we do not change H , i.e. other witnesses remain
in H , but we no longer consider them as witnesses.

For all x ∈ Vars and for every q1, q′1 ∈ Q1 such that δ1(q1, x) = q′1, we do the
following:

(a) For every simulation pair (q1, B2) ∈ H , we compute a set of incoming con-
texts, denoted in(q1, B2), as described in Section 6.1.1. Intuitively, these contexts
represent the incoming contexts of q1 under which it is simulated by B2. The
sets in(q1, B2) are computed such that the sets of different B2 sets are pairwise-
disjoint, and form a partition of the set of incoming contexts of q1 in A1.

(b) For every (q′1, B
′
2) ∈ H which is the x-witness of some (q1, B2) ∈ H , and for

every q′2 ∈ B′2, we compute a set of outgoing contexts, denoted out(q′1, B
′
2, q
′
2),

as described in Section 6.1.3. These contexts represent the outgoing contexts of
q′1 under which it is simulated by the state q′2 of B′2. The sets out(q′1, B

′
2, q
′
2) are

computed such that the sets of different states q′2 ∈ B′2 are pairwise-disjoint and
form a partition of the set of outgoing contexts of q′1 in A1.

(c) For every pair of simulation pairs (q1, B2), (q
′
1, B

′
2) ∈ H where (q′1, B

′
2) is the

x-witness of (q1, B2), and for every pair of states q2 ∈ B2 and q′2 ∈ B′2 such
that q2 “contributes” q′2 to the witness (see Section 6.1.3), we compute the set
of words leading from q2 to q′2 in A2. We denote this set by lang(q2, q′2) (see
Section 6.1.2).

(d) Finally, for every pair of simulation pairs (q1, B2), (q
′
1, B

′
2) ∈ H where (q′1, B

′
2)

is the x-witness of (q1, B2), and for every pair of states q2 ∈ B2 and q′2 ∈ B′2
where q2 contributes q′2 to the witness, if in(q1, B2) 6= ∅ and out(q′1, B

′
2, q
′
2) 6= ∅,

then we define σ(in(q1, B2), x, out(q
′
1, B

′
2, q
′
2)) = lang(q2, q

′
2). For all other

contexts, σ is defined arbitrarily.

Note that in step (d), for all the states q2 ∈ B2, the same set of incoming contexts
is used (in(q1, B2)), whereas for every q′2 ∈ B′2, a separate set of outgoing contexts
is used (out(q1, B′2, q

′
2)). This means that assignments to x that result from states in

the same B2 do not differ in their incoming context, but they differ by their outgoing
contexts, which is ensured by the property that the sets out(q′1, B

′
2, q
′
2) of different

states q′2 ∈ B′2 are pairwise-disjoint. Assignments to x that result from states in dif-
ferent B2 sets differ in their incoming context, which is ensured by the property that
the sets in(q1, B2) of different B2 sets are pairwise-disjoint. Assignments to x that
result from different transitions labeled by x also differ in their incoming contexts,
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which is ensured by the property thatA1 is deterministic, and hence the set of incom-
ing contexts of each state in A1 are pairwise disjoint. Altogether, there is a unique
combination of incoming and outgoing contexts for each assignment of x.

In the following we formally define in, out, lang and their computation.

6.1.1 Computation of Incoming Contexts

To compute the set in(q1, B2) of incoming contexts of q1 under which it is simulated
byB2, we define the witness graphGW = (QW , δW ). This is a labeled graph2 whose
statesQW are all simulation pairs, and whose transitions δW are given by the witness
relation: ((q′1, B

′
2), l, (q

′′
1 , B

′′
2 )) ∈ δW iff (q′′1 , B

′′
2 ) is the l-witness of (q′1, B

′
2).

To compute in(q1, B2), we derive from GW a DSA, denoted AW (q1, B2), by
setting the initial state to (ι1, {ι2}) and the final state to (q1, B2). We then define
in(q1, B2) to be SL(AW (q1, B2)), describing all the symbolic words leading from
(ι1, {ι2}) to (q1, B2) along the witness relation. These are the contexts in A1 for
which this witness is relevant.

By our choice of unique witnesses for H , the witness graph is deterministic and
hence each incoming context in it will lead to at most one simulation pair. Thus, the
sets in(q1, B2) partition the incoming contexts of q1, making the incoming contexts
in(q1, B2) of different sets B2 pairwise-disjoint.

6.1.2 Computation of Completions

To compute the set lang(q2, q′2) of completions that arise from paths leading from
q2 to q′2 in A2, we consider the DSA Aq2q′2 = 〈Q2, δ2, q2, {q′2}〉, whose states and
transition relation are as in A2, but its initial state is q2, and its only final state is q′2.
We define lang(q2, q′2) = SL(Aq2q′2).

6.1.3 Computation of Outgoing Contexts

To compute the set out(q′1, B
′
2, q
′
2) of outgoing contexts of q′1 under which it is simu-

lated by the state q′2 ofB′2, we define a contribution relation based on the witness rela-
tion, and accordingly a contribution graph GC . Namely, for (q1, B2), (q

′′
1 , B

′′
2 ) ∈ H

such that (q′′1 , B
′′
2 ) is the l-witness of (q1, B2), we say that q2 ∈ B2 “contributes”

q′′2 ∈ B′′2 to the witness if q2 has a corresponding l-transition (if l ∈ Σ) or a corre-
sponding path (if l ∈ Vars) to q′′2 . If two states q2 6= q′2 inB2 contribute the same state
q′′2 ∈ B′′2 to the witness, then we keep only one of them in the contribution relation.

The contribution graph is a labeled graph GC = (QC , δC) whose states QC are
triples (q1, B2, q2) where (q1, B2) ∈ H and q2 ∈ B2. In this graph, a transition
((q1, B2, q2), l, (q

′′
1 , B

′′
2 , q
′′
2 )) ∈ δC exists iff (q′′1 , B

′′
2 ) is the l-witness of (q1, B2)

and q2 contributes q′′2 to the witness. Note that GC refines GW in the sense that
its states are substates of GW and so are its transitions. However, unlike GW , GC

2 We use “states” and “transitions” to denote the components of a graph, rather than the traditional
notions of “nodes” and “edges”, in order to make the transition from graphs to DSAs and vice versa
smoother.
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Fig. 12 Example demonstrating the need for consistency in computation of outgoing contexts during un-
known elimination.

is nondeterministic since for an x-witness (where x ∈ Vars), a state q2 ∈ B2 can
contribute multiple states q′′2 ∈ B′′2 (all of which are reachable from it).

To compute out(q′1, B
′
2, q
′
2), we derive fromGC a nondeterministic version of our

symbolic automaton, denotedAC(q′1, B
′
2, q
′
2), by setting the initial state to (q′1, B

′
2, q
′
2)

and the final states to triples (q1, B2, q2) where q1 is a final state ofA1 and q2 is a final
state in A2. Then out(q′1, B

′
2, q
′
2) = SL(AC(q

′
1, B

′
2, q
′
2)). This is the set of outgoing

contexts of q′1 in A1 for which the state q′2 of the simulation pair (q′1, B
′
2) is relevant.

That is, it is used to simulate some outgoing path of q′1 leading to a final state.
However, the sets SL(AC(q

′
1, B

′
2, q
′
2)) of different q′2 ∈ B′2 are not necessarily

disjoint since multiple states q′2 ∈ B′2 can have outgoing transitions that are labeled
the same. In order to ensure disjoint sets of outgoing contexts out(q′1, B

′
2, q
′
2) for dif-

ferent states q′2 within the same B′2, we need to associate contexts in the intersection
of the outgoing contexts of several triples with one of them. Importantly, in order to
ensure “consistency” in the outgoing contexts associated with different, but related
triples, we require the following consistency property: If δW ((q1, B2), s) = (q′1, B

′
2),

then for every q′2 ∈ B′2, {s} · out(q′1, B′2, q′2) ⊆
⋃
{out(q1, B2, q2) | q2 ∈ B2 ∧

(q′1, B
′
2, q
′
2) ∈ δC((q1, B2, q2), s)}.

The consistency property ensures that the outgoing contexts associated with some
triple (q′1, B

′
2, q
′
2) are a subset of the outgoing contexts of triples that lead to it in GC ,

truncated by the corresponding word that leads to (q′1, B
′
2, q
′
2).

Example 10 To understand the importance of the consistency requirement of the out-
going contexts in the unknown elimination algorithm, consider the DSAs in Fig. 12.
DSA (a) is symbolically-included in (b). A possible simulation between the two is:

H = { (0, {0}), (1, {1}), (2, {2, 5}), (3, {3, 6}), (4, {4, 7})}.

We useH to perform unknown elimination in (a) based on (b). When considering the
symbolic transition (1, x, 2) in (a), we obtain in(1, {1}) = a, and out(2, {2, 5}, 2) =
out(2, {2, 5}, 5) = by. Similarly, based on the symbolic transition (3, y, 4), we ob-
tain in(3, {3, 6}) = axb, and out(4, {4, 7}, 4) = out(4, {4, 7}, 7) = ε. In both
cases, the out sets are not pairwise disjoint. If we arbitrarily eliminate the inter-
sections, we can get, for example out(2, {2, 5}, 2) = by, out(2, {2, 5}, 5) = ∅,
and out(4, {4, 7}, 4) = ∅, out(4, {4, 7}, 7) = ε. This will result in an assignment
σ(a, x, by) = c, σ(axb, y, ε) = f . However, σ(axby) = acbf which is not in-
cluded in the symbolic language of (b). This happens since the out sets computed
for the x-transition are not consistent with those computed for the y-transition, even
though the latter is reachable from the former. A consistent update of the out sets
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can be: out(2, {2, 5}, 2) = by, out(2, {2, 5}, 5) = ∅, out(4, {4, 7}, 4) = ε, and
out(4, {4, 7}, 7) = ∅, resulting in

σ(a, x, by) = c, σ(axb, y, ε) = d,

in which case σ(axby) = acbd.

Note that if out(q′1, B
′
2, q
′
2) = SL(AC(q

′
1, B

′
2, q
′
2)), the consistency property

holds trivially, as is the case if these sets are already pairwise-disjoint and no addi-
tional manipulation is needed. The following lemma ensures that if the intersections
of the out sets of different q′2 states in the same set B′2 are eliminated in a way that
satisfies the consistency property, then correctness is guaranteed.

Lemma 2 If for all (q′1, B
′
2, q
′
2) ∈ QC , out(q′1, B

′
2, q
′
2) ⊆ SL(AC(q

′
1, B

′
2, q
′
2)), and

for all (q′1, B
′
2) ∈ QW ,

⋃
q′2∈B′2

out(q′1, B
′
2, q
′
2) =

⋃
q′2∈B′2

SL(AC(q
′
1, B

′
2, q
′
2)), and

the consistency property holds, then the assignment σ defined as above satisfies
σ(SL(A1)) ⊆ SL(A2).

Proof We show that the consistency property ensures that σ defined as described
above indeed satisfies σ(s) ⊆ SL(A2) for every s ∈ SL(A1). To see this, con-
sider s = w1x1w2x2w3 . . . wnxnwn+1 ∈ SL(A1). Let qi = δ1(ι

1, w1 . . . wi) be
the state reached in A1 after traversing the prefix of s up to wi (before travers-
ing xi), and let q′i = δ1(ι

1, w1 . . . wixi) be the state reached after traversing xi as
well. Let Bi be the unique subset of Q2 such that w1 . . . wi ∈ in(qi, Bi), let B′i
be the unique subset of Q2 such that (q′i, B

′
i) is an xi-witness for (qi, Bi), and let

q̃′i ∈ B′i be the unique state of Q2 such that wi+1 . . . wn+1 ∈ out(q′i, B′i, q̃′i). More-
over, let q̃i ∈ Bi be the unique state that contributed q̃′i to B′i. Then, by definition
of σ, σ assigns lang(q̃i, q̃′i) to xi in its context in s , where by the choice of q̃i and
q̃′i, lang(q̃i, q̃

′
i) 6= ∅. We denote this assignment σ(xi), omitting the corresponding

(unique) context. Thus, q̃1, q̃′1, . . . , q̃i, q̃
′
i, . . . , q̃n, q̃

′
n is a sequence of states of Q2,

where we know that for every i and for every si ∈ σ(xi), δ2(q̃i, si) = q̃′i. In order to
show that σ(s) = {w1}σ(x1){w2} . . . {wn}σ(xn{{wn+1} ⊆ SL(A2), it remains to
show that (1) δ2(ι2, w1) = q̃1, (2) δ2(q̃′i, wi+1) = q̃i+1, and (3) δ2(q̃′n, wn+1) ∈ F2.

Properties (1) and (3) follow immediately from the definition of in and out and
the properties that w1 ∈ in(q1, B1) and wn+1 ∈ out(q′n, B′n, q̃′n). We show (2), i.e.
that δ2(q̃′i, wi+1) = q̃i+1. By definition of the in sets based on the witness graph, we
know that (qi, Bi) is the unique w1 . . . wi-witness for (ι1, {ι2}), and (qi+1, Bi+1)
is the unique w1 . . . wixiwi+1-witness for (ι1, {ι2}). Moreover, recall that (q′i, B

′
i)

is the unique xi-witness for (qi, Bi). This means that (q′i, B
′
i) is also the unique

w1 . . . wixi-witness for (ι1, {ι2}). Due to our particular choice of witnesses for H ,
we conclude that (qi+1, Bi+1) is the unique wi+1-witness of (q′i, B

′
i).

Since δW ((q′i, B
′
i), wi+1) = (qi+1, Bi+1), the consistency requirement implies

that for q̃i+1 ∈ Bi+1, {wi+1} · out(qi+1, Bi+1, q̃i+1) ⊆
⋃
q̃∈B′i
{out(q′i, B′i, q̃) |

(qi+1, Bi+1, q̃i+1) ∈ δC((q′i, B′i, q̃), wi+1)}. In our case,

xi+1wi+2 . . . wn+1 ∈ out(qi+1, Bi+1, q̃i+1).
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Therefore,

wi+1xi+1wi+2 . . . wn+1

∈
⋃
q̃∈B′i

{out(q′i, B′i, q̃) | (qi+1, Bi+1, q̃i+1) ∈ δC((q′i, B′i, q̃), wi+1)}.

This means that for some q̃ ∈ B′i, wi+1xi+1wi+2 . . . wn+1 ∈ out(q′i, B
′
i, q̃) and

(qi+1, Bi+1, q̃i+1) ∈ δC((q′i, B′i, q̃), wi+1). Since out is a partition and

wi+1xi+1wi+2 . . . wn+1 ∈ out(q′i, B′i, q̃′i),

we conclude that q̃ = q̃′i satisfies the above, and in particular q̃i+1 = δ2(q̃
′
i, wi+1),

which concludes (2). ut

In general, eliminating the intersections of the out(q′1, B
′
2, q
′
2) sets of different

states q′2 ∈ B′2 in a consistent way might be hard. However, in many cases this
can be achieved by simple heuristics. For example, if no two symbolic transitions
are reachable from each other in A1, then the intersections can be eliminated by
arbitrarily choosing one of the triples and associating the intersection with it. If A1

contains no loops, then a greedy algorithm can be used, where triples are ordered by
reachability, and handled according to this order. Specifically, if δW ((q1, B2), s) =
(q′1, B

′
2) for some s then triples of the form (q′1, B

′
2, q
′
2) are handled before triples

of the form (q1, B2, q2). Triples (q′1, B
′
2, q
′
2) that are handled first in such a (acyclic)

sequence of dependencies, eliminate the intersections of the out sets arbitrarily. The
following triples in the chain of dependencies eliminate intersections of the out sets
while maintaining consistency with respect to the consequent triples. This is the case
in Example 10, where out is first defined for (4, {4, 7}, 4) and (4, {4, 7}, 7), and only
later defined for (2, {2, 5}, 2) and (2, {2, 5}, 5) in a consistent way.

Example 11 Consider the simulation H from Example 7, computed for the DSAs
from Fig. 10(a) and (c). Unknown elimination based onH will yield the following as-
signment: σ(bya, x, (b|c)(f |g)) = d, σ(b, y, ax(b|c)(f |g)) = zd, σ(a, x, b(f |g)) =
d, σ(a, x, cg) = eh∗e, and σ(a, x, cf) = h. All other contexts are irrelevant and as-
signed arbitrarily. The assignments to x are based on the symbolic transition (1, x, 2)
in (a) and on the simulation pairs (1, {1}) and (1, {16}), as well as their x-witnesses
(2, {2, 6, 9}) and (2, {17}), respectively. Concretely, consider the simulation pair
(q1, B2) = (1, {1}) and its witness (q′1, B

′
2) = (2, {2, 6, 9}). Then B2 = {1}

contributed the incoming context in(1, {1}) = a, and each of the states 2, 6, 9 ∈
B′2 = {2, 6, 9} contributed the outgoing contexts out(2, {2, 6, 9}, 2) = b(f |g),
out(2, {2, 6, 9}, 6) = cg and out(2, {2, 6, 9}, 9) = cf , respectively. In this exam-
ple, the out sets are pairwise-disjoint, thus no further manipulation is needed. Note
that had we considered the simulation computed in Example 8, where the x-witness
for (1, {1}) is (2, {2, . . . 12, 20}), we would still get the same assignment because
for any q 6= 2, 6, 9, out(2, {2, . . . 12, 20}, q) = ∅. Similarly, (1, {16}) contributed
in(1, {16}) = bya, and the (only) state 17 ∈ {17} contributed out(2, {17}, 17) =
(b|c)(f |g). The assignment to y is based on the symbolic transition (9, x, 10) and
the corresponding simulation pair (9, {13}) and its y-witness (10, {15}) (see also
Example 9).
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7 Consolidation Using Join and Minimization

Consolidation consists of (1) union, which corresponds to join in the lattice over
equivalence classes, and (2) choosing a “most complete” representative from an equiv-
alence class, where “most complete” is captured by having a minimal set of comple-
tions.

Note that DSAs A, A′ in the same equivalence class do not necessarily have the
same set of completions. Therefore, it is possible that JAK 6= JA′K (as is the case
in Example 6). A DSA A is “most complete” in its equivalence class if there is no
equivalent DSA A′ such that JA′K ⊂ JAK. Thus, A is most complete if its set of
completions is minimal.

Let A be a DSA for which we look for an equivalent DSA A′ that is most com-
plete. If JAK itself is not minimal, there exists A′ such that A′ is equivalent to A but
JA′K ⊂ JAK. Equivalence means that (1) for every L′ ∈ JA′K there exists L ∈ JAK
such that L ⊆ L′, and (2) conversely, for every L ∈ JAK there exists L′ ∈ JA′K such
that L′ ⊆ L. Requirement (1) holds trivially since JA′K ⊂ JAK. Requirement (2) is
satisfied iff for every L ∈ JAK \ JA′K (a completion that does not exist in the minimal
DSA), there exists L′ ∈ JA′K such that L′ ⊆ L (since for L ∈ JAK ∩ JA′K this holds
trivially).

Namely, our goal is to find a DSA A′ such that JA′K ⊂ JAK and for every L ∈
JAK \ JA′K there exists L′ ∈ JA′K such that L′ ⊆ L. Clearly, if for some L ∈ JAK
there is no L′ ∈ JAK such that L′ ⊂ L, then if L 6∈ JA′K, the requirement will not be
satisfied. This means that the only completions L that can be removed from JAK are
themselves non-minimal, i.e., are supersets of other completions in JAK.

Note that it is in general impossible to remove from JAK all non-minimal lan-
guages: as long as SL(A) contains at least one symbolic word s ∈ (Σ ∪Vars)∗ \Σ∗,
there are always multiple completions in JAK that are comparable by language inclu-
sion (and hence are not all minimal). Namely, if assignments σ and σ′ differ only on
their assignment to some variable x in s (with the corresponding context), where σ
assigns to it Lx and σ′ assigns to it L′x where Lx ⊃ L′x, then L = σ(SL(A)) =
σ(SL(A) \ {s}) ∪ σ(s) ⊃ σ′(SL(A) \ {s}) ∪ σ′(s) = σ′(SL(A′)) = L′. Therefore
L ⊃ L′ where both L,L′ ∈ JAK. On the other hand, not every DSA has an equivalent
concrete DSA, whose language contains no symbolic word. For example, consider a
DSA Ax such that SL(Ax) = {x}, i.e. JAxK = 2Σ

∗ \ {∅}. Then for every concrete
DSA Ac with JAcK = {SL(Ac)}, there is Lx ∈ JAxK such that either Lx ⊃ SL(Ac),
in which case Ax 6� Ac, or SL(Ac) ⊃ Lx, in which case Ac 6� Ax. Therefore,
symbolic words are a possible source of non-minimality, but they cannot always be
avoided.

Below we provide a condition which ensures that we remove from JAK only non-
minimal completions. The intuition is that non-minimality of a completion can arise
from a variable in A whose context matches the context of some known behavior. In
this case, the minimal completion will be obtained by assigning to the variable the
matching known behavior, whereas other assignments will result in supersets of the
minimal completion. Or in other words, to keep only the minimal completion, one
needs to remove the variable in this particular context.
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Example 12 This intuition is demonstrated by Example 6, where the set of com-
pletions of the DSA from Fig. 11(b) contains non-minimal completions due to the
symbolic word axb that co-exists with the word adb in the symbolic language of the
DSA. Completions resulting by assigning d to x are strict subsets of completions
assigning to x a different language, making the latter non-minimal. The DSA from
Fig. 11(a) omits the symbolic word axb, keeping it equivalent to (b), while making
its set of completions smaller (due to removal of non-minimal completions resulting
from assignments that assign to x a language other than d).

Definition 11 Let A be a DSA. An accepting path π in A is redundant if there exists
another accepting path π′ in A such that π � π′. A symbolic word s ∈ SL(A) is
redundant if its (unique) accepting path is redundant.

This means that a symbolic word is redundant if it is “less complete” than another
symbolic word in SL(A). In particular, symbolic words where one can be obtained
from the other via renaming of variables are redundant. Such symbolic words are
called equivalent since their corresponding accepting paths π and π′ are symbolically-
equivalent.

In Example 12, the path 〈0, 1, 6, 7〉 of the DSA in Fig. 11(b) is redundant due to
〈0, 1, 2, 3〉. Accordingly, the symbolic word axb labeling this path is also redundant.

An equivalent characterization of redundant paths is the following:

Definition 12 For a DSA A and a path π in A, we use A \ π to denote a DSA such
that SL(A \ π) = SL(A) \ SL(π).

Lemma 3 Let A be a DSA. An accepting path π in A is redundant iff π � A \ π.

Proof Let π, π′ be two different accepting paths in A such that π � π′. Let SL(π) =
{s},SL(π′) = {s ′}, where s, s ′ ∈ SL(A). Since A is deterministic, s 6= s ′. There-
fore SL(π) = {s} ⊆ SL(A) \ {s ′} = SL(A) \ SL(π) = SL(A \ π). By Corollary 1,
π � A \ π.

Let π be an accepting path in A such that π � A \ π. Then there exists a sym-
bolic assignment σ to π such that σ(SL(π)) ⊆ SL(A \ π) = SL(A) \ SL(π) (*).
Furthermore, by Lemma 1, there exists such an assignment that maps each word in
SL(π) to a singleton language. Suppose SL(π) = {s}, and assume that σ(s) = {s ′},
then σ(SL(π)) = σ(s) = {s ′}. Thus by (*), s ′ ∈ SL(A) \ {s}. This ensures that s ′

is in SL(A) and that s 6= s ′. Therefore, there exists an accepting path π′ 6= π in A
such that SL(π′) = {s ′}. The same symbolic assignment σ also witnesses structural
inclusion of π in π′ since σ(SL(π)) = {s ′} ⊆ SL(π′). We conclude that π � π′. ut

Theorem 8 If π is a redundant path, then (A\π) ≡ A, and JA\πK ⊆ JAK, i.e.A\π
is at least as complete as A.

Proof First, A \ π � A since SL(A \ π) ⊆ SL(A) (see Corollary 1). For the other
direction, recall that π � A \ π (by Lemma 3), and hence there exists a symbolic
assignment σ such that σ(SL(π)) ⊆ SL(A \ π). We define a symbolic assignment σ′

that agrees with σ on the single word in SL(π), and assigns to any other x ∈ Vars in
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Fig. 13 Inputs (a) and (b), union (u) and minimized DSA (m).

any other context {x}. Therefore, σ′(SL(A)) = σ(SL(π))∪SL(A\π) = SL(A\π),
and σ′ witnesses structural inclusion of A in A \ π. We conclude that A � A \ π.

We show that JA\πK ⊆ JAK. LetL ∈ JA\πK, and let σL be a concrete assignment
such that σL(SL(A \ π)) = L. Moreover, let σ be such that σ(SL(π)) ⊆ SL(A \ π)
(as defined above), where we assume that σ assigns a singleton language to the single
word in SL(π). We use the composition of σL over σ to define a concrete assignment
for the single word in SL(π), and use σL for any other word in SL(A). The result
is a concrete assignment σ′L such that σ′L(SL(A)) = σ′L(SL(π)) ∪ σ′L(A \ π) =
σL(σ(SL(π))) ∪ σL(A \ π) = L, where the last equality holds since σ(SL(π)) ⊆
SL(A \ π), and hence σL(σ(SL(π))) ⊆ SL(A \ π) = L. Therefore, L ∈ JAK as
well. ut

Theorem 8 leads to a natural semi-algorithm for minimization by iteratively iden-
tifying and removing redundant paths. Several heuristics can be employed to identify
such redundant paths.

In fact, when considering minimization of A into some A′ such that SL(A′) ⊆
SL(A), it turns out that a DSA without redundant paths cannot be minimized further:

Theorem 9 IfA ≡ (A\π) for some accepting path π inA, then π is redundant inA.

Proof Suppose A � A \ π, and let SL(π) = {s}. Assume to the contrary that the
path π is not redundant inA. This means that π 6� A\π. Thus, there is an assignment
σ′ toA\π such that for every assignment σ to π, σ(SL(π)) = σ(s) 6⊆ σ′(SL(A\π))
(*). This implies that for every assignment σ to A, σ(SL(A)) 6⊆ σ′(SL(A \ π))
(otherwise σ(s) ⊆ σ(SL(A)) ⊆ σ′(SL(A \π)) in contradiction to (*)). We conclude
that A 6� A \ π, in contradiction to the assumption. ut

The theorem implies that for a DSA A without redundant paths there exists no
DSA A′ such that SL(A′) ⊂ SL(A) and A′ ≡ A, thus it cannot be minimized further
by removal of paths (or words).

Fig. 13 provides an example for consolidation via union (which corresponds to
join in the lattice), followed by minimization.
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8 Putting It All Together

Now that we have completed the description of symbolic automata, we describe how
they can be used in a static analysis for specification mining. We return to the example
in Section 2, and emulate an analysis using the new abstract domain. This analysis
would combine a set of program snippets into a typestate for a given API or class,
which can then be used for verification or for answering queries about API usage.

Firstly, the DSAs in Fig. 1 and Fig. 2 would be mined from user code using the
analysis defined by Mishne et al [16]. In this process, code that may modify the object
but is not available to the analysis becomes a variable transition.

Secondly, we generate a typestate specification from these individual DSAs. As
shown in Section 2, this is done using the join operation, which consolidates the
DSAs and generates the one in Fig. 3(b). This new typestate specification is now
stored in our specification database. If we are uncertain that all the examples which
we are using to create the typestate are correct, we can add weights to DSA transi-
tions, and later prune low-weight paths, as suggested by Mishne et al.

Finally, a user can query against the specification database, asking for the correct
sequence of operations between open and close, which translates to querying the
symbolic word open·x·close. Unknown elimination will find an assignment such that
σ(x) = canRead · read, as well as the second possible assignment, σ(x) = write.

The precision/partialness ordering of the lattice captures the essence of query
matching. A query will always have a � relationship with its results: the query will
always be more partial than its result, allowing the result to contain the query’s as-
signments, as well as more precise, which means a DSA describing a great number
of behaviors can contain the completions for a very narrow query.
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